• Title/Summary/Keyword: Growth environment

Search Result 7,197, Processing Time 0.038 seconds

Development of an environment field monitoring system to measure crop growth

  • Kim, Yeon-Soo;Kim, Du-Han;Chung, Sun-Ok;Choi, Chang-Hyun;Choi, Tae-Hyun;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • The purpose of this study was to develop an environment field monitoring system to measure crop growth. The environment field monitoring system consisted of sensors, a data acquisition system, and GPS. The sensors used in the environment field monitoring system consisted of an ambient sensor, a soil sensor, and an intensity sensor. The temperature and humidity of the atmosphere were measured with the ambient sensor. The temperature, humidity, and EC of the soil were measured with the soil sensor. The data acquisition system was developed using the Arduino controller. The field monitoring data were collected before a rainy day, on a rainy day, and after the rainy day. The measured data using the environment field monitoring system were compared with the Daejeon regional meteorological office data. The correlation between the data from the environment field monitoring system and the data from the Daejeon regional meteorological office was analyzed for performance evaluation. The correlation of the temperature and humidity of the atmosphere was analyzed because the Daejeon regional meteorological office only provided data for the temperature and humidity of the atmosphere. The correlation coefficients were 0.86 and 0.90, respectively. The result showed a good correlation between the data from the environment field monitoring system and the data from the Daejeon regional meteorological office. Therefore, the developed system could be applied to monitoring the field environment of agricultural crops.

Oil consumption and economic growth: A panel data analysis

  • Lim, Kyoung-Min;Lim, Seul-Ye;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.66-71
    • /
    • 2014
  • Oil is obviously vital for economic growth and industry development. This paper attempts to explore whether or not there is a inverted-U relationship between oil consumption and economic growth. To this end, we employ a panel data analysis with fixed effect or random effect models using the set of data from 61 countries for the year 1990-2008. In conclusion, a statistically significant inverted-U relationship between per capita consumption of oil and per capita GDP is found. However, the level of per capita GDP at the peak point of per capita oil consumption is estimated to be 65,072 in 2005 international constant dollars, which is much larger than economic scales of sampled countries. Thus, as per capita GDP grows, per capita oil consumption is predicted to increase until eventually reaching the peak.

환경조건이 백서전치 맹출속도에 미치는 영향에 관한 실험적 연구

  • Byun, Young-Nam
    • The Journal of the Korean dental association
    • /
    • v.12 no.2
    • /
    • pp.113-118
    • /
    • 1974
  • The importance of light and stress as factors in growth has not previously been clearly delineated. As the result of using experimental environments on growth rate of incisors in 24 young rats with body weight ranging 58 Gm to 62 Gm., the author obtained following conclusions. 1) The eruption rate of normal rats incisors was 0.421mm in upper incisors and 0.592mm in lower incisors per a day respectively. 2) In light environment, growth rate of incisors in rats and body weights were found to increase more rapidly during the 8-week experimental period in comparison with any environments. 3) In stress environment, growth rate of incisors in rats and body weight were found to decrease in comparison with amy environments during the 8-week experimental period.

  • PDF

Effects of Aluminum Solution Treatment on the Growth of Forsythia koreana Cuttings (알루미늄용액 처리가 개나리삽수의 생장에 미치는 영향)

  • 김갑태
    • Korean Journal of Environment and Ecology
    • /
    • v.6 no.1
    • /
    • pp.9-11
    • /
    • 1992
  • To examine aluminum toxicity on woody plants, Forsythia koreana cuttings were grown in the aluminum solution and ground water(pH 6.75). Aluminum solution were prepared 1.0, 2.5 and 5.0mM aluminum potassium sulfate, dilulted with ground water. Shoot growth, leaf number, leaf injury and leaf chlorophyll content were measured and compared among the treatments. In all growth-related characters(shoot growth. leaf number, leaf injury and leaf chlorophyll content), differences among the treatments were highly significant. Forsythia koreana cuttings were severely stressed in aluminum solution more than 1.0mM concentration.

  • PDF

Predicting Plant Biological Environment Using Intelligent IoT (지능형 사물인터넷을 이용한 식물 생장 환경 예측)

  • Ko, Sujeong
    • Journal of Digital Contents Society
    • /
    • v.19 no.7
    • /
    • pp.1423-1431
    • /
    • 2018
  • IoT(Internet of Things) is applied to technologies such as agriculture and dairy farming, making it possible to cultivate crops easily and easily in cities.In particular, IoT technology that intelligently judge and control the growth environment of cultivated crops in the agricultural field is being developed. In this paper, we propose a method of predicting the growth environment of plants by learning the moisture supply cycle of plants using the intelligent object internet. The proposed system finds the moisture level of the soil moisture by mapping learning and finds the rules that require moisture supply based on the measured moisture level. Based on these rules, we predicted the moisture supply cycle and output it using media, so that it is convenient for users to use. In addition, in order to reduce the error of the value measured by the sensor, the information of each plant is exchanged with each other, so that the accuracy of the prediction is improved while compensating the value when there is an error. In order to evaluate the performance of the growth environment prediction system, the experiment was conducted in summer and winter and it was verified that the accuracy was high.

Effect of Residual Droplet on the Solution-Grown SiC Single Crystals (상부종자 용액 성장에 있어 성장결정상 잔류액적의 영향)

  • Ha, Minh-Tan;Shin, Yun-Ji;Bae, Si-Young;Yoo, Yong-Jae;Jeong, Seong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.516-521
    • /
    • 2019
  • The top seeded solution growth (TSSG) method is an alternative technique to grow high-quality SiC crystals that has been actively studied for the last two decades. However, the TSSG method has different issues that need to be resolved when compared to the commercial SiC crystal growing method, i.e., physical vapor transport (PVT). A particular issue of the TSSG method of results from the presence of liquid droplets on the grown crystal that can remain even after crystal growth; this induces residual stress on the crystal surface. Hence, the residual droplet causes several unwanted effects on the crystal such as the initiation of micro-cracks, micro-pipes, and polytype inclusions. Therefore, this study investigated the formation of the residual droplet through multiphysics simulations and lead to the development of a liquid droplet removal method. As a result, we found that although residual liquid droplets significantly apply residual stress on the grown crystal, these could be vaporized by adopting thermal annealing processes after the relevant crystal growing steps.

Research-platform Design for the Korean Smart Greenhouse Based on Cloud Computing (클라우드 기반 한국형 스마트 온실 연구 플랫폼 설계 방안)

  • Baek, Jeong-Hyun;Heo, Jeong-Wook;Kim, Hyun-Hwan;Hong, Youngsin;Lee, Jae-Su
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • This study was performed to review the domestic and international smart farm service model based on the convergence of agriculture and information & communication technology and derived various factors needed to improve the Korean smart greenhouse. Studies on modelling of crop growth environment in domestic smart farms were limited. And it took a lot of time to build research infrastructure. The cloud-based research platform as an alternative is needed. This platform can provide an infrastructure for comprehensive data storage and analysis as it manages the growth model of cloud-based integrated data, growth environment model, actuators control model, and farm management as well as knowledge-based expert systems and farm dashboard. Therefore, the cloud-based research platform can be applied as to quantify the relationships among various factors, such as the growth environment of crops, productivity, and actuators control. In addition, it will enable researchers to analyze quantitatively the growth environment model of crops, plants, and growth by utilizing big data, machine learning, and artificial intelligences.