• Title/Summary/Keyword: Growth Rate of Microorganisms

Search Result 193, Processing Time 0.031 seconds

Comparison of Fecal Microbial Communities between White and Black Pigs

  • Guevarra, Robin B.;Kim, Jungman;Nguyen, Son G.;Unno, Tatsuya
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.4
    • /
    • pp.369-375
    • /
    • 2015
  • Meat from black pigs (BP) is in high demand compared with that from modern white pig (WP) breeds such as Landrace pigs owing to its high quality. However, the growth rate of black pigs is slower than that of white pig breeds. We investigated differences in the fecal microbial composition between white and black pigs to explore whether these breeds differed in the composition of their gut microbial communities. The swine gut microbiota was investigated using Illumina's MiSeq-based sequencing technology by targeting the V4 region of the 16S rRNA gene. Our results showed that the composition of the gut microbiota was significantly different between the two pig breeds. While the composition of the WP microbiota shifted according to the growth stage, fewer shifts in composition were observed for the BP gut microbiota. In addition, the WP gut microbiota showed a higher Firmicutes/Bacteroidetes ratio compared with that of BP. A high ratio between these phyla was previously reported as an obesity-linked microbiota composition. Moreover, the WP microbiota contained a significantly higher abundance of cellulolytic bacteria, suggesting a possibility of higher fiber digestion efficiency in WP compared to BP. These findings may be important factors affecting growth performance and energy-harvesting capacities in pigs. Our findings of differences in the gut microbiota composition between the two breeds may provide new leads to understand growth rate variation across pig breeds.

Shelf-life Estimation of Frankfurter Sausage Containing Dietary Fiber from Rice Bran Using Predictive Modeling (예측미생물을 이용한 미강식이섬유 함유 프랑크푸르터 소시지의 유통기한 설정)

  • Heo, Chan;Kim, Hyoun-Wook;Choi, Yun-Sang;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.29 no.1
    • /
    • pp.47-54
    • /
    • 2009
  • Predictive modeling was applied to study the growth of microorganisms related to spoilage in frankfurter sausage containing various levels of dietary fiber (0, 1, 2, and 3%) from rice bran and to estimate its shelf-life. Using the Baranyi model, total viable cells, anaerobic and psychrotrophic bacteria were measured during 35 days of cold storage ($<4{\pm}1^{\circ}C$). The lag times (LT) demonstrated by control and treatment groups were 6.28, 623, 6.24, and 6.25 days, respectively. The growth rate of total viable cells in each group were 0.95, 0.91, 0.92, and 0.91 (Log CFU/g/day), respectively. The anaerobic and psychrotrophic bacteria had lower initial ($y_0$) and maximal bacterial counts ($y_{max}$) than total viable cells. Also, the anaerobic and psychrotrophic bacteria possessed lower growth rate and longer lag time than total viable cells. The estimated shelf-life of frankfurter containing rice bran fiber by the growth rate of total viable cells was 7.8, 7.9, 7.9, and 7.7 days, respectively. There were no significant differences in shelf-life as a function of fiber content. In other words, the addition of dietary fiber in sausage did not show the critically hazardous results in growth of microorganism. The 12 predictive models were then characterized by high $R^2$, and small RMSE. Furthermore, $B_f$ and $A_f$ values showed a very close relationship between the predictive and observed data.

Isolation of Amylolytic Bifidobacterium sp. Int-57 and Characterization of Amylase

  • Ji, Geun-Eog;Han, Hee-Kyung;Yun, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.85-91
    • /
    • 1992
  • The intestinal microflora of humans is an extraordinarily complex mixture of microorganisms, the majority of which are anaerobic microorganisms. The distribution of amylolytic microorganisms in the human large intestinal tract was investigated in various individuals of differing ages using anaerobic culture techniques. A large percentage of the amylolytic microorganisms present belonged to the Genus Bifidobacteria. The number of Bifidobacteria increased significantly at two years of age. Adults and children above 2 years old carried about $0.8{\times}10^9-2.0{\times}10^{10}$ colony forming units (CFU/gram) of amylolytic Bifidobacteria. Among these amylolytic Bifidobacteria, Int-57 was chosen for further studies. Between 65% and 85% of the amylase produced was secreted and the remaining amylase was bound to the cell wall facing the outside. Amylase production could be induced by starch in a stable form. When cells were grown on maltose or glucose, amylase production was much lower than on starch and amylase activity disappeared after 24 hours growth on these media. Partially purified enzymes showed optimum activity at a temperature of $50^{\circ}C$ and at an optimum pH of 5.5, respectively. Heat treatment at $70^{\circ}C$ for 30 minutes almost completely inactivated amylase. The hydrolysis products of starch were mainly maltose and maltotriose. Soluble starch, amylose, amylopectin, and $\gamma$-cyclodextrin($\gamma$-CD) were easily hydrolyzed. The rate of hydrolysis of $\alpha$-CD and $\beta$-CD was slower than that of $\gamma$-CD. Carboxymethyl cellulose, $\beta$-1, 3-glucan and inulin were not hydrolyzed.

  • PDF

Effect of EM and Amino acid Fertilizer Application on the Growth of 'Seolhyang' Strawberry Mother Plants (EM 및 아미노산액비 시용이 '설향' 딸기 모주의 생육에 미치는 영향)

  • Ann, Seoung-Won;Kim, Young-Chil;Kang, Tae-Ju;Park, Gab-Soon;Lee, Kook-Han
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.55-64
    • /
    • 2015
  • The dry weight of mother plants' leaves had the highest increase rate in both NS (single-use) and NS+EM (mixed-use) mixed with NS 0.8 (customary use). In seafood amino acid fertilizer (SAF) application, the increase rate was highest in SAF solution at a 300-fold dilution. Mother plants' crown diameter, plant height, leaf length, leaf width, petiole length and leaf number showed the greatest growth amount when NS 0.8 (customary use) was mixed to NS (single-use) or NS+EM (mixed-use) solution. The growth was highest in SAF solution diluted 300 folds, but lowest in SAF solution diluted 100 folds. Of all inorganic nutrients, excluding sulfur, total amount of nitrogen, available phosphorus, potassium, calcium and magnesium had the highest increase rate in both NS (single-use) and NS+EM (mixed-use) with the treatment of NS 0.8 (customary use). Total nitrogen, in particular, was increased by 3.1% in NS 0.4, 6.0% in NS 0.8, and 4.5% in NS 0.8 with the application of NS+EM at a 500-fold dilution compared to NS alone. Total nitrogen amount showed the highest increase rate in SAF solution diluted 300 folds. Total nitrogen, available phosphorus, calcium, magnesium and EC in soils applied with culture solutions (NS, NS+EM) had increasing tendencies after fertilizer application. The results were comparable to those of SAF treatment. The increase rate of each inorganic nutrient composition declined in soils applied with NS+EM solution diluted 500 folds compared to NS alone.

Effect of Culture Conditions on Growth and Production of Docosahexaenoic Acid (DHA) using Thraustochytrium aureum ATCC 34304

  • Hur Byung-Ki;Cho Dae-Won;Kim Ho-Jung;Park Chun-Ik;Suh Hyung-Joon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.10-15
    • /
    • 2002
  • Environmental and medium factors were investigated as basic data for optimizing DHA production when using Thraustochytrium aureum. To study the effect of environmental conditions, the rotation speed and culture temperature were changed. Plus the trend of the growth characteristics, lipid content in the biomass, and DHA content in lipids were evaluated according to various initial glucose concentrations. The biomass, lipid, and DHA analyses showed that the physiological characteristics of T. aureum were closely related with the environmental and medium conditions, as in the case of other marine microorganisms. For example, a low rotation speed of 50 rpm lowered the cell growth rate as well as the DHA content in the lipids. A low temperature had a negative effect on the cell growth, yet a positive effect on the lipid content in the biomass. Different initial glucose concentrations had no effect on the lipid content in the biomass or DHA content in the lipids, yet did affect the cell growth. Accordingly, these results show that environmental and medium factors must be synthetically considered in order to optimize DHA production when using T. aureum.

Characteristics of sawdust cultivation of Lentinula edodes with different methods of spawn inoculation

  • Chang, Hyun You;Seo, Geum Hui;Lee, Yong Kuk;Jeon, Sung Woo
    • Journal of Mushroom
    • /
    • v.16 no.2
    • /
    • pp.61-64
    • /
    • 2018
  • This study was carried out to investigate the management characteristics and growth performance of L. edodes from the cooling stage to incubation. Bags of different heights and weights are available for bagging. When the medium size of $17{\times}13cm$ was used and the size of the inoculation hole was changed from 1/3 to 2/3, the browning period was shortened to 30 days. Mycelial growth was evaluated according to the cooling temperature after sterilization. It was observed to be the highest at 122 mm/15 days at $10^{\circ}C$ and 114 mm/15 days and 117 mm/15 days at $15^{\circ}C$ and $20^{\circ}C$, respectively. The contamination rate of the sawdust media before inoculation was measured as 0, $4.5{\times}10$, $1.3{\times}10^2$, $4.0{\times}10^3cfu$ at $5^{\circ}C$, $10^{\circ}C$, $15^{\circ}C$, and $24^{\circ}C$ respectively. The average of $1.6{\times}10^8$ colony forming units (cfu) of microorganisms was observed in the sawdust that had been piled for six months outdoors. In summer, the sawdust has to be used immediately after mixing. The sterilized medium had an average of $4{\times}10^3cfu$ of microorganisms at $24^{\circ}C$ and $1.3{\times}10^2cfu$ at $15^{\circ}C$. After 15 days of inoculation in vitro, the growth conditions of the sawdust was the best at 132 mm, followed by grain and liquid. When inoculated with liquid spawn, the moisture content of the substrate should be adjusted between 50% and 55% in advance.

Effects of Soil Remediation Methods on the Biological Properties of Soils (오염토양 정화공법이 토양의 생물학적 특성에 미치는 영향)

  • Yi, Yongmin;Kim, Gukjin;Sung, Kijune
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.3
    • /
    • pp.73-81
    • /
    • 2013
  • Various remediation methods have been applied to clean soils contaminated with pollutants. They remove contaminants from the soils by utilizing physicochemical, biological, and thermal processes and can satisfy soil remediation standards within a limited time; however, they also have an effect on the biological functions of soils by changing soil properties. In this study, changes of the biological properties of soils before and after treatment with three frequently used remediation methods-soil washing, land farming, and thermal desorption-were monitored to investigate the effects of remediation methods on soil biological functions. Total microbial number and soil enzyme activities, germination rate and growth of Brassica juncea, biomass change of Eisenia andrei were examined the effects on soil microorganisms, plant, and soil organisms, respectively. After soil washing, the germination rate of Brassica juncea increased but the above-ground growth and total microbial number decreased. Dehydrogenase activity, germination rate and above-ground growth increased in both land farming and thermal desorption treated soil. Although the growth of Eisenia andrei in thermal desorption treated soil was higher than any other treatment, it was still lower than that in non-contaminated soil. These results show that the remediation processes used to clean contaminated soil also affect soil biological functions. To utilize the cleaned soil for healthy and more value-added purposes, soil improvement and process development are needed.

Modified Cultivation Methods Improve Shelf-life and Quality of Soybean Sprouts, Effects of Treatment with Oak Charcoal and Citrus sunki Seed Extract

  • Oh, Young-Ju;Kim, Soo-Hyun
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.4
    • /
    • pp.336-342
    • /
    • 2003
  • The effects of cultivation methods (cultivation of curled-shaped type, M-1; conventional cultivation, M-2; growing after treatment with a growth regulator, M-3; cultivation by the combination of M-1 and treatment with oak charcoal, M-4) on the quality characteristics of soybean sprouts were studied by the measurement of growth characteristics. This study also investigated the changes in shelf-life stability of the new soybean sprouts (NSB) using M-4, which was cultivated with oak charcoal and treated with antimicrobial Citrus sunki seed extract. Among the soybean sprouts grown for six days at the high temperature and humidity environment (90$\pm$5% RH, 25$\pm$1$^{\circ}C$), M-1 revealed no significant difference in terms of quality, such as the harvest yield, the rot rate and the growth characteristics when compared with M-2. M-3 showed no significant difference in growth characteristics, of hardness, and sensory evaluation scores when compared with the soybean sprouts grown by conventional methods. NSB had a low number of total microorganisms and had a better appearance after five days of storage than did the control group (M-2). These findings demonstrate that chemical-free and clean soybean sprouts can be grown by combining oak charcoal and antimicrobial Citrus sunki seed extract, thereby meeting the consumer demand for safe, chemical free sprouts.

The Kinetics of Protease Production by Bacillus licheniformis (Bacillus licheniformis에 의한 단백질분해효소 생산 Kinetics)

  • 김진현;유영제
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.128-133
    • /
    • 1989
  • Carbon sources and nitrogen sources are known to be very important in protease production by microorganisms. The effects of carbon source and nitrogen source on protease biosynthesis by Bacillus licheniformis were investigated using batch cultures. As initial carbon and nitrogen concentrations of culture medium increased, the specific growth rate of Bacillus licheniformis was increased, while the specific protease production rate was decreased. From the results of batch cultures, a mathematical model which considers the effects of carbon source and cnitrogen source was proposed and the methods to increase the productivity of protease were discussed.

  • PDF

A simple culture technique of Rhodobacter azotoformans EBN-7 for public use: application to NH4+-N removal in shrimp aquaculture water

  • Cho, Kyoung Sook;Kim, Joong Kyun
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.10
    • /
    • pp.525-536
    • /
    • 2022
  • Photosynthetic bacteria (PSB) attract considerable interest as useful microorganisms; nevertheless, a generalized culture technique has not been previously reported owing to difficulty in their cultivation. Therefore, a simple culture technique suitable for public use was investigated. Among the PSB tested, the strain Rhodobacter azotoformans EBN-7 was the most suitable for scale-up production because it showed the highest specific growth rate (0.20 h-1) on basal medium. In scale-up cultivation (500 L), R. azotoformans EBN-7 showed 4.50 × 1010 colony-forming units mL-1 (number of viable cells), dry cell weight of 26.8 g/L, and a specific growth rate of 0.15 h-1. Cultivation using this final culture broth (as seed culture) in a 15 L simple reactor was successful, with maintenance of cell activity evident. For use as seed culture, the maximum allowable preservation period of R. azotoformans EBN-7 at 4℃ was 3 months. When R. azotoformans EBN-7 cultivated in a simple technique was applied to shrimp aquaculture water, NH4+-N was reduced from 0.61 mg/L to 0.24 mg/L (by 60.7%) in 4 days in comparison with the control. Thus, this simple culture technique using R. azotoformans EBN-7 has the potential for a good removal efficiency of NH4+-N, making seed culture easier and suitable for public use.