• Title/Summary/Keyword: Grout/soil formation

Search Result 11, Processing Time 0.029 seconds

Evaluation of Thermal Conductivity for Grout/Soil Formation Using Thermal Response Test and Parameter Estimation Models (열응답 시험과 변수 평가 모델을 이용한 그라우트/토양 혼합층의 열전도도 산정)

  • Sohn Byong Hu;Shin Hyun Jun;An Hyung Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.173-182
    • /
    • 2005
  • The Performance of U-tube ground heat exchanger for geothermal heat Pump systems depends on the thermal properties of the soil, as well as grout or backfill materials in the borehole. In-situ tests provide a means of estimating some of these properties. In this study, in-situ thermal response tests were completed on two vertical boreholes, 130 m deep with 62 mm diameter high density polyethylene U-tubes. The tests were conducted by adding a monitored amount of heat to water over a $17\~18$ hour period for each vertical boreholes. By monitoring the water temperatures entering and exiting the loop and heat load, overall thermal conductivity values of grout/soil formation were determined. Two parameter estimation models for evaluation of thermal response test data were compared when applied on the same temperature response data. One model is based on line-source theory and the other is a numerical one-dimensional finite difference model. The average thermal conductivity deviation between measured data and these models is of the magnitude $1\%$ to $5\%$.

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.414-423
    • /
    • 2006
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925, Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower and the motion of grout is also a function of formation permeability. Viscosity of grout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this thesis, characteristics of new cement grout material that is developed recently is studied: injectable volume of new grout material is tested in two different sizes of sands, and the method to calculate injectable volume of grout is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to be an exponential function of time. And lumped parameter $\theta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressure.

  • PDF

A New Groutability Criterion of Cement-based Grout with Consideration of Viscosity and Filtration Phenomenon (점도변화와 흡착현상을 고려한 시멘트계 그라우트재의 새로운 침투 기준)

  • Kim, Jong-Sun;Lee, In-Mo;Lee, Mun-Seon;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.154-163
    • /
    • 2009
  • The groutability depends on the properties of the grout, its injection processes, and on the mechanical properties of the soil formation. During the process of pouring cement-based grouting into a porous medium, a variation with time occurs in the viscosity of grout suspension. In addition the particle filtration phenomenon will limit the expansion of the grouted zone because cement particles are progressively stagnant within the soil matrix. In this paper, a closed-form solution was derived by implementing the mass balance equations and the generalized phenomenological filtration law, which can be used to evaluate the deposition of cement-based grout in the soil matrix. The closed-form solution relevant to a particular spherical flow was modified by a step-wise numerical calculation, considering the variable viscosity caused by a chemical reaction, and the decrease in porosity resulting from grout particle deposition in the soil pores. A series of pilot-scale chamber injection tests was performed to verify that the developed step-wise numerical calculation is able to evaluate the injectable volume of grout and the deposition of grout particles. The results of the chamber injection tests concurred well with that of the step-wise numerical calculation. Based on the filtration phenomenon, a new groutability criterion of cement-based grout in a porous medium was proposed, which might facilitate a new insight in the design of the grouting process.

  • PDF

A Study on the Behaviour Mechanism of Jacket Anchor (자켓앵커 거동특성에 관한 연구)

  • Kim, Dong-Hee;Kim, In-Chul;Kong, Hyun-Seok;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1240-1249
    • /
    • 2008
  • Jacket anchor was developed to increase the pullout resistance of general ground anchor in soft ground, and the mechanism of pullout resistance of jacket anchor was analyzed. Also, the ultimate bond stress of jacket anchor was estimated by ultimate resistance which is determined by field tests. Grout milk was injected into the jacket to make grout bulb of jacket anchor. The formation of grout bulb of jacket anchor increases the diameter of grout bulb, ground strength and confining pressure between anchor grout and soil. From the twelve field test results, it was observed that the pullout resistance of jacket anchor is 15.38~295.02%(average 83.53%) greater than that of general ground anchor, and plastic deformation of jacket anchor is 20.78~1,496.45%(average 288.78%) smaller than that of general ground anchor at the same load cycle. Especially, it was investigated that the increase of ultimate resistance over 200% and the reduction of plastic deformation over 600% was obtained in gravel layer. It means that the jacket anchor is superior to the general ground anchor in gravel layer. Finally, the ultimate bond stress was proposed to design jacket anchor.

  • PDF

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.5-13
    • /
    • 2007
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925. Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower one and the motion of grout is also a function of formation permeability. Viscosity of pout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this paper, characteristics of new cement grout material that has been developed recently are studied: injectable volume of new grout material is tested in two different grain sizes of sands; and the method to calculate injectable volume of grout Is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to increase as an exponential function of time. And lumped parameter $\delta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressures. Injection test results show that grout penetration rate is decreased by the increase of grout viscosity and clogging phenomena.

Effect of Permeability Anisotropy on the Effective Radius of Grout Bulb in Horizontal Permeation Grouting - Numerical Study (투수계수 이방성을 고려한 수평 약액 그라우트 구근의 침투 유효 반경에 관한 수치해석적 연구)

  • Baek, Seung-Hun;Joo, Hyun-Woo;Kwon, Tae-Hyuk;Han, Jin-Tae;Lee, Ju-Hyung;Yoo, Wan-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.149-156
    • /
    • 2020
  • Permeation grouting effectively enhances soil strength and decreases permeability of soil; however, the flow of grout is heavily affected by anisotropy of hydraulic conductivity in layers. Therefore, this study investigates the effect of permeability anisotropy on the effective radius of horizontal permeation grout using computational fluid dynamics (CFD). We modeled the horizontal permeation grout flow as a two-phase viscous fluid flow in porous media, and the model incorporated the chemical diffusion and the viscosity variation due to hardening. The numerical simulation reveals that the permeability anisotropy shapes the grout bulb to be elliptic and the dissolution-driven diffusion causes a gradual change in grout pore saturation at the edge of the grout bulb. For the grout pore saturations of 10%, 50% and 90%, the horizontal and vertical radii of grout bulb are estimated when the horizontal-to-vertical permeability ratio varies from 0.01 to 100, and the predictive model equations are suggested. This result contributes to more efficient design of injection strategy in formation layers with permeability anisotropy.

Analysis of thermal stress and heat transfer due to circulating fluid in ground heat exchanger (지중 열교환기의 순환수에 의한 열응력 및 열전달 거동 분석)

  • Gil, Hu-Jeong;Lee, Kang-Ja;Lee, Chul-Ho;Choi, Hang-Seok;Choi, Hyo-Bum
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.385-395
    • /
    • 2009
  • In this study, a series of numerical analysis has been accomplished on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) in a geothermal heat pump system (GHP) considering the circulating fluid, pipe, grout and soil formation. A finite element analysis program, ABAQUS, was employed to evaluate the temperature distribution on the cross section of the U-loop system involving HDPE pipe/grout/formation and to compare sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system. Especially, the latticed pipe is equipped with a thermal insulation zone in order to reduce thermal interference between the inflow pipe and the outflow pipe. Also, a thermal stress analysis was performed with the aid of ABAQUS. 3-D finite volume analysis program, FLUENT, was adapted to analyze a coupled system between fluid circulation in the pipe and heat transfer and simulate an operating process of the closed-loop vertical ground heat exchanger. In this analysis, the effect of the thermal properties of grout, rate of circulation pump, distance between the inflow pipe and the outflow pipe, and the effectiveness of the latticed HDPE pipe system are taken into account.

  • PDF

Behavior and Application of Jacket pack anchor in Soft ground (연약지반상에 자켓팩앵커의 적용과 거동특성)

  • Kim, Tae-Seob;Cho, Yoon-Ju;Jung, Chang-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1065-1072
    • /
    • 2010
  • The excavation site in the new city of inchon songdo is distributed with soft reclaimed soil and marine deposit. So, the general ground anchor is not applied to this layer of soft ground as the earth retaining support system, because of settlement. And then, Jacket pack anchor which is newly developed in order to increasing the pullout resistance by certain grout bulb formation and expansion effect in soft ground is applied to this site instead of the general ground anchor. Though the maximum horizontal displacement shows about 30mm~100mm (The maximum horizontal displacement/excavation depth$\fallingdotseq$0.32~1.0%) according to excavation sequence, generally excavation work finished stably. Also, load cell after setting shows almost increasing trend with increasing horizontal displacement. It means that the settlement of Jacket pack anchor in soft ground is good. From the result of this case, we knew that Jacket pack anchor was able to use the earth retaining support system in soft ground. Using Jacket pack anchor in soft ground, The allowance of the horizontal displacement is applied more than general value considering soil factors.

  • PDF

A Study of Borehole Thermal Behavior with 1-Dimensional Model;Field Test Analysis included (1차원 모델에 의한 보어홀 열거동 해석 및 현지측정)

  • Kim, Dae-Ki;Woo, Joung-Son;Ro, Jeong-Geun;Lee, Se-Kyoun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.550-554
    • /
    • 2007
  • A one-dimensional heat transfer model coupled with parameter estimation is developed in this study to predict the effective thermal conductivities of soil formation and borehole resistances from in situ field test data. In this application a new method of using initial ignoring time(IIT) obtained from error estimation is tried and turned out to be successful in determining soil thermal conductivities. The validity of this model is accomplished through comparison of the predicted temperature profiles of the model with the data from laboratory scale experimental setting. Eleven test boreholes were constructed in Ochang, Chungcheong Buk Do, and thermal response test was carried out with each borehole. The results of the in situ tests were analyzed with our 1-D numerical model and compared with the results of line source method. The comparison shows that the thermal properties from line source method is a little lower (${\sim}95%$)than those from numerical method. The reason of such result seems to be the lower thermal conductivity of grout material, which is not counted in line source method.

  • PDF

Thermal Behavior of Vertical Ground Heat Exchanger by Numerical Simulation (수치해석을 통한 수직 밀폐형 지중열 교환기의 열전달 거동 연구)

  • Gil, Hu-Jeong;Lee, Chul-Ho;Kim, Ju-Young;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1638-1646
    • /
    • 2008
  • This paper presents a series of numerical simulations on the thermal performance and sectional efficiency of a closed-loop vertical ground heat exchanger (U-loop) equipped in a geothermal heat pump system (GHP). A 2-D finite element analysis, ANSYS, was employed to evaluate the temperature distribution on the borehole cross section involving HDPE pipe/grout/soil formation to compare the sectional efficiency between the conventional U-loop and a new latticed HDPE pipe system which is equipped with a thermally insulating latice in order to reduce thermal interference between the inflow and outflow pipes. In addition, a 3-D finite volume analysis (Fluent) was used to simulate the operating process of the closed-loop vertical ground heat exchanger by considering the effect of grout's thermal properties, rate of circulation pump, distance between the inflow and outflow pipes, and the effectiveness of the latticed HDPE pipe system. It was observed that the thermal interference between the two strands of U-loop is of importance in determining the efficiency of the ground heat exchanger, and thus it is highly recommendable to modify the cross section configuration of the conventional U-loop system by including a thermally insulating latice between the two strands.

  • PDF