• Title/Summary/Keyword: Group ring

Search Result 949, Processing Time 0.028 seconds

Crystal Structures of Dehydrated $Ag^{+}\;and\;Ca^{2+}$ Exchanged Zeolite A, $Ag_{3.3}Ca_{4.35}$-A and of Its Ethylene Sorption Complex

  • Se Bok Jang;Jong Yul Park;Yunghee Oh Kim;Yang Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.82-86
    • /
    • 1993
  • Two crystal structures of dehydrated $Ag_{3.3}Ca_{4.35}-A ({\alpha} = 12.256(2){\AA})$ and of its ethylene sorption complex (${\alpha} = 12.259(2){\AA}$) have been determined by single-crystal X-ray diffraction techniques in the cubic space group Pm3m at 21(l)$^{\circ}$C. Both crystals were dehydrated at 360$^{\circ}$C and $2{\times}10^{-6}$ Torr for 2 days and one crystal was treated with 200 Torr of ethylene at 24(2)$^{\circ}$C. The structures were refined to final error indices, $R_1$=O.065 and $R_2$ = 0.088 with 202 reflections and $R_1$=0.049 and $R_2$ = 0.044 with 259 reflections, respectively, for which I>3${\sigma}$(I). In these structures, all Ag$^+$ and Ca$^{2+}$ ions are located on two and three different threefold axes associated with 6-ring oxygens, respectively. In $Ag_{3.3}Ca_{4.35}-A{\cdot}6.65\;C_2H_4,\;3.3\;Ag^+\;and\;3.35\;Ca^{2+}$ ions are recessed 1.09 ${\AA}$ and 0.21 ${\AA}$, respectively, into the large cavity from the (111) plane at O(3). Each Ag$^+$ and Ca$^{2+}$ ion in the large cavity forms a complex with one $C_2H_4$$^{2+}$ ions and ethylene molecules are longer than those between Ag$^+$ ions and ethylene molecules.

An X-ray Diffraction Study of Na, Ag-A Reduced by Hydrogen. Ag$_3\;^+$and Ag$_3\;^{2+}$ Clusters

  • Kim, Yang;Seff, Karl
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.4
    • /
    • pp.135-140
    • /
    • 1984
  • The reduction of vacuum-dehydrated $Na_xAg_{12-x}-A, 0 {\le} x {\le} 9.2$, and its reoxidation by O$_2$, have been studied by X-ray powder diffraction. Also, the structure of $Na_6Na_6-A$ treated with hydrogen at room temperature has been studied by single crystal methods in the cubic space group Pm3m at $24{\circ}C (a = 12.221(2) {\AA})$. The diffraction pattern of dehydrated Ag$_{12}$-A reduced by H$_2$ contains only the (111) and (200) reflections of silver metal, indicationg that the zeolite structure has been lost, but the zeolite's diffraction pattern and structural integrity can be fully restored by oxidation with O$_2$ at 100 or 200${\circ}C$. In contrast, the structures of $Na_xAg_{12-x}-A$, x = 4.5 and 9.2, were not destroyed by treatment with hydrogen. Dehydrated Na$_6Ag_6$-A treated with 50 Torr of hydrogen gas at 24${\circ}C$ for 30 minutes has $6\; Na^+\;and\;1.27\;Ag^+$ ions at 6-ring sites. These $Ag^+ ions are associated with 2.54 Ag${\circ}$ atoms to form 1.27 $Ag_3^+$ clusters per unit cell. Also found were 0.7 $Ag_3^{2+}$ clusters per unit cell near the 8-rings. The structure was refined to the final error indices R$_1$ = 0.134 and R$_2$ (weighted) = 0.147, using 168 independent reflections for which $I_0 >3{\sigma}(I_0)$.

Silver Ions in Zeolite A are Reduced by H$_2$ only at High Temperatures when 8-Rings are Blocked by Cs$^+$. Crystal Structures of Dehydrated $Ag_9Cs_3$-A Treated with H$_2$ at 23, 310, and 470${^{\circ}C}$

  • KIm, Yang;Seff, Karl
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.69-72
    • /
    • 1987
  • The structures of dehydrated $Ag_9Cs_3$-A treated with hydrogen gas at three different temperatures have been determined by single-crystal X-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at 23(1) $^{\circ}C$. All crystals were ion exchanged in flowing streams of aqueous $AgNO_3$/$CsNO_3$ with a mole ratio 1:3.0 to achieve the desired crystal composition. The structures treated with hydrogen at $23^{\circ}C(a=12.288(1)\;{\AA})\;and\;310^{\circ}C(a=12.291(2)\;{\AA})$ refined to the final error indices R1 = 0.091 and R2 = 0.079, and 0.065 and 0.073, respectively, using the 216 and 227 reflections, respectively, for which I >3${\sigma}$(I). In both of these structures, eight $Ag^+$ ions are found nearly at 6-ring centers, and three $Cs^+$ ions lie at the centers of the 8-rings at sites of $D_{4h}$ symmetry. One $Ag^{\circ}atom$, presumably formed from the reduction of a $Ag^+$ ion by an oxide ion of a residual water molecule or of the zeolite framework during the dehydration process, is retained within the zeolite, perhaps in a cluster. In these two structures hydrogen gas could not enter the zeolite to reduce the $Ag^+$ ions because the large $Cs^+$ ions blocked all the 8-windows. However, hydrogen could slowly diffuse into the zeolite and was able to reach and to reduce about half of the $Ag^+$ ions in the structure only at high temperature ($470^{\circ}C$). The silver atoms produced migrated out of the zeolite framework, and the protons generated led to substantial crystal damage.

Two Crystal Structures of Ethylene and Acetylene Sorption Complexes of Dehydrated Fully $Ca^{2+}$-Exchanged Zeolite A

  • Jang, Se-Bok;Moon, Sung-Doo;Park, Jong-Yul;Kim, Un-Sik;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.70-74
    • /
    • 1992
  • Two crystal structures of ethylene (a= 12.272(2) ${\AA}$) and acetylene (a = 12.245(2) ${\AA}$) sorption complexes of dehydrated fully $Ca^{2+}$-exchanged zeolite A have been determined by single crystal X-ray diffraction techniques in the cubic space group, Pm3m at $21(1)^{\circ}C$. Their complexes were prepared by dehydration at $360^{\circ}C$ and $2{\times}10^{-6}$ Torr for 2 days, followed by exposure to 200 Torr of ethylene gas and 120 Torr of acetylene gas both at $24^{\circ}C$, respectively. The structures were refined to final R (weighted) indices of 0.062 with 209 reflections and 0.098 with 171 reflections, respectively, for which I > 3${\sigma}$(I). The structures indicate that all six $Ca^{2+}$ ions in the unit cell are associated with 6-oxygen ring of the aluminosilicate framework. Four of these extend somewhat into the large cavity where each is coordinated to three framework oxide ions and an ethylene molecule and/or an acetylene molecule. The carbon to carbon distance in ethylene sorption structure is 1.48(7) ${\AA}$ and that in acetylene sorption structure 1.25(8) ${\AA}$. The distances between $Ca^{2+}$ ion and carbon atom are 2.87(5) ${\AA}$ in ethylene sorption structure and 2.95(7) ${\AA}$ in acetylene sorption structure. These bonds are relatively weak and probably formed by the electrostatic attractions between the bivalent $Ca^{2+}$ ions and the polarizable ${\pi}$-electron density of the ethylene and/or acetylene molecule.

Preparation of Core-shell Type Nanoparticles of Poly($\varepsilon$-caprolactone) /Poly(ethylene glycol)/Poly( $\varepsilon$-caprolactone) Triblock Copolymers

  • Ryu, Jae Gon;Jeong, Yeong Il;Kim, Yeong Hun;Kim, In Suk;Kim, Do Hun;Kim, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.467-475
    • /
    • 2001
  • A triblock copolymer based on $poly(\varepsilon-caprolactone)$ (PCL) as the hydrophobic part and poly(ethylene glycol) (PEG) as the hydrophilic portion was synthesized by a ring-opening mechanism of ${\varepsilon}-caprolactone$ with PEG containing a hydroxyl group at bot h ends as an initiator. The synthesized block copolymers of PCL/PEG/PCL (CEC) were confirmed and characterized using various analysis equipment such as 1H NMR, DSC, FT-IR, and WAXD. Core-shell type nanoparticles of CEC triblock copolymers were prepared using a dialysis technique to estimate their potential as a colloidal drug carrier using a hydrophobic drug. From the results of particle size analysis and transmission electron microscopy, the particle size of CEC core-shell type nanoparticles was determined to be about 20-60 nm with a spherical shape. Since CEC block copolymer nanoparticles have a core-shell type micellar structure and small particle size similar to polymeric micelles, CEC block copolymer can self-associate at certain concentrations and the critical association concentration (CAC) was able to be determined by fluorescence probe techniques. The CAC values of the CEC block copolymers were dependent on the PCL block length. In addition, drug loading contents were dependent on the PCL block length: the larger the PCL block length, the higher the drug loading content. Drug release from CEC core-shell type nanoparticles showed an initial burst release for the first 12 hrs followed by pseudo-zero order release kinetics for 2 or 3 days. CEC-2 block copolymer core-shell type nanoparticles were degraded very slowly, suggesting that the drug release kinetics were governed by a diffusion mechanism rather than a degradation mechanism irrelevant to the CEC block copolymer composition.

Structure of a Copper(Ⅱ) Hexaazamacrotricyclic Complex : (1,3,6,9,11,14-Hexaazatricyclo[12.2.1.16,9]octadecane)-copper(Ⅱ) Perchlorate

  • Cheon Manseog;Suh Paik Myunghyun;Shin Whanchul
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.4
    • /
    • pp.363-367
    • /
    • 1992
  • The crystal structure of (1,3,6,9,11,14-hexaazatricycol[12.2.1.$1^{6,9}$]octadecane)copper(Ⅱ) perchlorate, Cu($C_{12}H_{26}N_6$)$(ClO_4)_2$, has been determined by the X-ray diffraction methods. The crystal data are as follows: Mr=516.9, triclinic, ${\alpha}=8.572\;(2)$, b=8.499 (3), c=15.204 (3) ${\AA}$, ${\alpha}=80.42\;(5),\;{\beta}=73.57\;(3),\;{\gamma}=69.82\;(4)^{\circ},\;V=994.2\;{\AA}^3,\;D_C=1.726\;gcm^{-3}$, space group $P{\tilde{1}},\;Z=2,\;{\mu}=21.27\;cm^{-1}&, F(000)=534 and T=297 K. The structure was solved by direct methods and refined by full-matrix least-squares methods to and R value of 0.081 for 1608 observed reflections measured with graphite-mono-chromated Mo Ka radiation on a diffractometer. There are two independent complexes in the unit cell. The two copper ions lie at the special positions (1/2, 0, 0) and (0, 1/2, 1/2)and each complex possesses crystallographic center of symmetry. Each Cu ion is coordinated to four nitrogen donors if the hexaazamacrotricyclic ligand and weakly interacts with two oxygen atoms of the perchlorate ions to form a tetragonally distorted octahedral coordination geometry. The Cu_N (sec), Cu_N(tert) and Cu_O coordination distances are 1.985 (14), 2.055 (14) and 2.757 (13) ${\AA}$ for the complex A and 1.996 (10), 2.040 (11) and 2.660 (13) ${\AA}$ for the complex B, respectively. The macrocycles in the two independent cations assume a similar conformation with the average r.m.s. deviation of 0.073 ${\AA}$. Two 1,3-diazacyclopentane ring moieties of the hexaazamacrotricyclic ligand are placed oppositely and almost perpendicularly to the square coordination plane of the ruffled 14-membered macrocycle. The secondary N atoms are hydrogen-bonded to the perchlorate O atoms with distances of 3.017 (23) and 3.025 (19) ${\AA}$ for the complexes A and B, respectively.

Sources, Components, Structure, Catalytic Mechanism and Applications: a Critical Review on Nicotinate Dehydrogenase

  • Zhi Chen;Xiangjing Xu;Xin Ju;Lishi Yan;Liangzhi Li;Lin Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.707-714
    • /
    • 2023
  • Plant-derived insecticide-neonicotinoid insecticides (NIs) played a crucial role in the development of agriculture and food industry in recent years. Nevertheless, synthesis of these nitrogen-containing heterocyclic compounds with an effective and greener routing remains challenging especially to the notion raise of "green chemistry" and "atom economy". While bio-catalyzed methods mediated by nicotinate dehydrogenase (NDHase) then provide an alternative. The current review mainly focuses on the introduction of sources, components, structure, catalytic mechanism and applications of NDHase. Specifically, NDHase is known as nicotinic acid hydroxylase and the sources principally derived from phylum Proteobacteria. In addition, NDHase requires the participation of the electron respiratory chain system on the cell membrane. And the most important components of the electron respiratory chain are hydrogen carrier, which is mainly composed of iron-sulfur proteins (Fe-S), flavin dehydrogenase (FAD), molybdenum binding protein and cytochromes. Heterologous expression studies were hampered by the plasmid and host with high efficiency and currently only Pseudomonas entomophila L48 as well as Comamonas testosterone was successfully utilized for the expression of NDHase. Furthermore, it is speculated that the conjugate and inductive effects of the substituent group at position 3 of the substrate pyridine ring exerts a critical role in the hydroxylation reactions at position 6 concerning about the substrate molecular recognition mechanism. Finally, applications of NDHase are addressed in terms of pesticide industry and wastewater treatment. On conclusion, this critical review would not only deepen our understanding of the theory about NDHase, but also provides the guideline for future investigation of NDHase.

Study on degradation efficiency and pathways of tetracycline by ferrate(VI) (Ferrate(VI)를 이용한 tetracycline 항생제 분해효율 및 중간생성물 연구)

  • Park, Kyeong Deok;Kim, Il Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.226-226
    • /
    • 2021
  • Tetractycline은 sulfonamides, penicilines 등과 함께 축산계에서 널리 사용되는 대표적인 항생물질의 한 종류이다. 2011년 사료 내 항생제 투여를 금지한 이후 자가치료 및 예방용으로 사용되고 있으며, 가축의 체내로 투여되는 tetracycline는 주로 분뇨에 포함되어 배출되는데, 강우 등 물 순환에 따라 지표수 및 지하수로 이동하여 미생물에 독성을 일으키거나 내성균이 발생하기도 한다. Tetracycline 등의 항생물질 처리 방식으로 흡착 등 다양한 공정이 제시되고 있다. 본 연구에서는 산화제 중 하나인 ferrate(VI)를 이용하여 tetracycline 분해실험을 수행하였다. ferrate(VI)는 염소산화물 및 H2O2에 비해 비교적 강한 산화력을 가지며, 처리 후 발생되는 철염(Fe3+)은 독성이 없다는 장점이 있다. Ferrate(VI)는 병원균 제거 등에 효과적인 것으로 알려져 있으며, 다양한 난분해성 물질과 항생물질을 성공적으로 분해하여 그 효과를 입증한 바 있다. 본 연구에서는 자체적으로 제조한 potassium ferrate(VI)를 이용하여 다양한 수중 환경에서 tetracycline를 분해하고, 분해특성 및 중간생성물 연구를 수행하였다. Ferrate(VI)는 염기성 환경에서 tetracycline 분해효율이 가장 높은 것으로 나타났으며, 이는 pH에 따른 tetracycline과 ferrate(VI)의 이온화가 가장 큰 원인인 것으로 판단된다. 특히 ferrate(VI)는 pH가 낮을수록 쉽게 환원되는 특징이 있으며, 염기성으로 갈수록 안정화하여 오래 잔류하므로 이러한 결과가 나타난 것으로 판단된다. 중간생성물 조사 결과, ferrate(VI)와 tetracycline 사이의 분해 메커니즘은 주로 OH 라디칼로 인한 것이 대부분이며, hydroxylation과 amino group에서의 demethylation의 형태로 발생하였다. 이후 추가적인 반응으로 benzene ring이 깨지면서 결과적으로 CO2 및 H2O 등으로 무기물화 되는 것으로 판단된다.

  • PDF

A self-confined compression model of point load test and corresponding numerical and experimental validation

  • Qingwen Shi;Zhenhua Ouyang;Brijes Mishra;Yun Zhao
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.465-474
    • /
    • 2023
  • The point load test (PLT) is a widely-used alternative method in the field to determine the uniaxial compressive strength due to its simple testing machine and procedure. The point load test index can estimate the uniaxial compressive strength through conversion factors based on the rock types. However, the mechanism correlating these two parameters and the influence of the mechanical properties on PLT results are still not well understood. This study proposed a theoretical model to understand the mechanism of PLT serving as an alternative to the UCS test based on laboratory observation and literature survey. This model found that the point load test is a self-confined compression test. There is a compressive ellipsoid near the loading axis, whose dilation forms a tensile ring that provides confinement on this ellipsoid. The peak load of a point load test is linearly positive correlated to the tensile strength and negatively correlated to the Poisson ratio. The model was then verified using numerical and experimental approaches. In numerical verification, the PLT discs were simulated using flat-joint BPM of PFC3D to model the force distribution, crack propagation and BPM properties' effect with calibrated micro-parameters from laboratory UCS test and point load test of Berea sandstones. It further verified the mechanism experimentally by conducting a uniaxial compressive test, Brazilian test, and point load test on four different rocks. The findings from this study can explain the mechanism and improve the understanding of point load in determining uniaxial compressive strength.

Effect of Whalakyuoleyng-dan plus Yinsamyangwui-tang on Anti-angionesis (활락효영단합인삼양위탕(活絡效靈丹合人蔘養胃湯)이 혈관신생(血管新生) 억제(抑制)에 미치는 영향(影響))

  • Ko, Ki-Wan;Park, Joon-Hyuk;Kang, Hee;Kim, Sung-Hoon;Yu, Young-Beob;Shim, Bum-Sang;Choi, Seung-Hoon;Ahn, Koo-Seok
    • THE JOURNAL OF KOREAN ORIENTAL ONCOLOGY
    • /
    • v.7 no.1
    • /
    • pp.77-97
    • /
    • 2001
  • Anti-angiogenesis is one of therapies which have been high-lightened on the research of cancer treatment. Anti-angiogenesis means that new blood vessels are created from a existing capillary tube and it is a important process on metastasis and permeation when cancer is created or formed. Since angiogenesis have been under research, a complete recovery oriented treatment against cancer have been suggested blocking metastasis, delaying the growth of cancer cell, and blocking the supply of oxygen and nutritive substance through the web of blood vessels. Until now, there are several anti-angiogenesis, which have been known to the public, such as thalidomide, angiostatin, endostatin, 2-methoxyestradiol, TNP-470, and marimastat, etc. Additionally, 17 clinical testing projects about anti-angiogenesis are on the process in NCI(National Cancer Institute). Especially, TNP-470 showed effectiveness against cancer on clinical testing after finishing animal testing. Based on existing researches showing that Yinsamyangwui-tang is effective to strengthening body resistance and Whallakhyolenyng-dan effects cells on the inside of blood vessel because Whallakhyolenyng- dan restrains cell adhesion during the restraining period of a blood vessel, I tried to research the effect of Whalakhyolenyng-dan plus Yinsamyangwui-tang on angiogenesis. I made a conclusion putting into operation through using SK-Hep-1 (KCLB 30052), A549(KCLB 10185), AGS(KCLB 21739), and BCE(Bovine Capillary Endothelial Cell). Followings are the results of my experimental research: 1. According to the researching results of anti-cancer activation against cancer cell, Whallkhyoleyng dan plus Yinsamyangwui-tang decreased the number of cancer cells -- While injecting $600{\mu}g/ml$, injected groups decreased 3.1% more comparing with the contrastive group of SK-Hep-1, 49.7% more comparing with the contrastive group of A549, and 31.0% more comparing with the contrastive group of AGS. 2. According to the researching results of DNA composition effect between BCE and cancer cell, Whallakhyoleyng-dan plus Yinsamyangwui-tang reduced the rate of SK-Hep-1 synthesis inhibition by 59.1% at $600{\mu}g/ml$ intensity comparing with contrastive group; for A549, 72.6%; for AGS, 6.1%, for BCE, 28.9%. 3. According to the researching results about the effect of BCE cell to angiogenesis, angiogenesis was restrained at $400{\mu}g/ml$ intensity during 18 hours observation. 4. In the case of aortic ring assay, the half level of angiogenesis was reduced comparing with the contrastive group while injecting with $400{\mu}g/ml$ intensity; with $800{\mu}g/ml$, under 10% comparing with contrastive group; and with $1600{\mu}g/ml$, complete restrain. According to the above results, Whallakhyoleyng-dan plus Yinsamyangwui-tang was proved to have an anti-angiogenetic effects.

  • PDF