• 제목/요약/키워드: Group Search Optimization

검색결과 39건 처리시간 0.038초

A Modified Particle Swarm Optimization for Optimal Power Flow

  • Kim, Jong-Yul;Lee, Hwa-Seok;Park, June-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권4호
    • /
    • pp.413-419
    • /
    • 2007
  • The optimal power flow (OPF) problem was introduced by Carpentier in 1962 as a network constrained economic dispatch problem. Since then, it has been intensively studied and widely used in power system operation and planning. In the past few decades, many stochastic optimization methods such as Genetic Algorithm (GA), Evolutionary Programming (EP), and Particle Swarm Optimization (PSO) have been applied to solve the OPF problem. In particular, PSO is a newly proposed population based stochastic optimization algorithm. The main idea behind it is based on the food-searching behavior of birds and fish. Compared with other stochastic optimization methods, PSO has comparable or even superior search performance for some hard optimization problems in real power systems. Nowadays, some modifications such as breeding and selection operators are considered to make the PSO superior and robust. In this paper, we propose the Modified PSO (MPSO), in which the mutation operator of GA is incorporated into the conventional PSO to improve the search performance. To verify the optimal solution searching ability, the proposed approach has been evaluated on an IEEE 3D-bus test system. The results showed that performance of the proposed approach is better than that of the standard PSO.

다봉성 함수의 최적화를 위한 향상된 유전알고리듬의 제안 (An Enhanced Genetic Algorithm for Optimization of Multimodal)

  • 김영찬;양보석
    • 한국지능시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.373-378
    • /
    • 2001
  • 본 연구에서의 다봉성 함수의 최적화를 위한 향상된 유전알고리듬을 제안하였다. 이 방법은 2개의 주요 단계로 구성된다. 첫째 단계는 유전알고리듬과 함수인정기준을 이용한 전역탐색단계이다. 초기해 집단에 대한 개체군의 소속도를 함수인정기준에 따라 결정한다. 둘째 단계는 개체군과 탐색최적해 사이의 유사도를 결정하고, 재구성된 탐색공간에서 단일점 탐색법에 의해 최적해를 탐색한다. 4개의 시험함수를 이용한 수치 예에 대해 종래의 방법과의 비교를 통하여 제안된 알고리듬이 모든 전역최적해 뿐만 아니라 국부최적해도 탐색이 가능함을 확인하였다.

  • PDF

Optimization of multi-water resources in economical and sustainable way satisfying different water requirements for the water security of an area

  • Gnawali, Kapil;Han, KukHeon;Koo, KangMin;Yum, KyungTaek;Jun, Kyung Soo
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.161-161
    • /
    • 2019
  • Water security issues, stimulated by increasing population and changing climate, are growing and pausing major challenges for water resources managers around the world. Proper utilization, management and distribution of all available water resources is key to sustainable development for achieving water security To alleviate the water shortage, most of the current research on multi-sources combined water supplies depends on an overall generalization of regional water supply systems, which are seldom broken down into the detail required to address specific research objectives. This paper proposes the concept of optimization framework on multi water sources selection. A multi-objective water allocation model with four objective functions is introduced in this paper. Harmony search algorithm is employed to solve the applied model. The objective functions addresses the economic, environmental, and social factors that must be considered for achieving a sustainable water allocation to solve the issue of water security.

  • PDF

개선 클러스터링 화음탐색법 개발 및 다양한 최적화문제에 적용 (Development of Improved Clustering Harmony Search and its Application to Various Optimization Problems)

  • 최지호;정동휘;김중훈
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.630-637
    • /
    • 2018
  • 본 연구에서는 최적화 기법의 하나인 화음탐색법 (HS: Harmony Search)에 클러스터링 기법을 적용하여 개선된 형태의 HS를 제안하였다. HS는 음악의 즉흥연주를 모방하여 개발되었으며 무작위선택, 기억회상, 음조조정의 세 가지 연산을 이용하여 최적해를 반복적으로 탐색해 나간다. 기존의 HS의 경우, 세 가지 연산 중 기억회상을 진행할 때 해집단의 저장 공간인 해저장소 (HM: Harmony Memory)에 있는 해를 선택하는데, 이 과정에서 적합도를 정량화한 목적함수 값에 상관없이 모두 동일한 확률로 해의 선택이 이루어지고, 이에 따라 최적의 해를 탐색하는 속도가 상대적으로 낮다. 본 연구에서 제안한 개선 클러스터링 화음탐색법 (ICHS: Improved Clustering Harmony Search)는 HM에서 목적함수의 값을 기준으로 클러스터링 기법을 적용하여 목적함수 값이 유사한 솔루션들이 하나의 해집단을 형성하도록 클러스터링을 수행한다. 이를 통해 만들어진 클러스터 중 상대적으로 목적함수 값이 우수한 클러스터에는 더 높은 선택 확률을 부여하여, 적합도가 높은 클러스터에 포함된 해의 결정변수가 선택될 확률을 높게 하는 역할을 한다. 본 연구에서는 ICHS의 효율성을 검증하기 위하여 개발 기법을 기존 논문에서 제시된 수학적 최적화 문제에 적용하였고 우수한 해탐색 성능을 확인할 수 있었다. 또한 실제 공학 문제에 대한 적용성 평가를 위해 개발 기법을 대규모 상수도관망 관경최적화 문제에 적용하였다. 상수도관망 최적설계에 대한 ICHS의 적용 결과, 기존 최적화 기법에 비해 우수한 해를 안정적으로 도출할 수 있는 것으로 나타났다.

대잠전 의사결정지원 시스템에서 표적 탐색 논리 연구 (A Study on the Target Search Logic in the ASW Decision Support System)

  • 조성진;최봉완;전재효
    • 한국군사과학기술학회지
    • /
    • 제13권5호
    • /
    • pp.824-830
    • /
    • 2010
  • It is not easy job to find a underwater target using sonar system in the ASW operations. Many researchers have tried to solve anti-submarine search problem aiming to maximize the probability of detection under limited searching conditions. The classical 'Search Theory' deals with search allocation problem and search path problem. In both problems, the main issue is to prioritize the searching cells in a searching area. The number of possible searching path that is combination of the consecutive searching cells increases rapidly by exponential function in the case that the number of searching cells or searchers increases. The more searching path we consider, the longer time we calculate. In this study, an effective algorithm that can maximize the probability of detection in shorter computation time is presented. We show the presented algorithm is quicker method than previous algorithms to solve search problem through the comparison of the CPU computation time.

Group Power Constraint Based Wi-Fi Access Point Optimization for Indoor Positioning

  • Pu, Qiaolin;Zhou, Mu;Zhang, Fawen;Tian, Zengshan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권5호
    • /
    • pp.1951-1972
    • /
    • 2018
  • Wi-Fi Access Point (AP) optimization approaches are used in indoor positioning systems for signal coverage enhancement, as well as positioning precision improvement. Although the huge power consumption of the AP optimization forms a serious problem due to the signal coverage requirement for large-scale indoor environment, the conventional approaches treat the problem of power consumption independent from the design of indoor positioning systems. This paper proposes a new Fast Water-filling algorithm Group Power Constraint (FWA-GPC) based Wi-Fi AP optimization approach for indoor positioning in which the power consumed by the AP optimization is significantly considered. This paper has three contributions. First, it is not restricted to conventional concept of one AP for one candidate AP location, but considered spare APs once the active APs break off. Second, it utilizes the concept of water-filling model from adaptive channel power allocation to calculate the number of APs for each candidate AP location by maximizing the location fingerprint discrimination. Third, it uses a fast version, namely Fast Water-filling algorithm, to search for the optimal solution efficiently. The experimental results conducted in two typical indoor Wi-Fi environments prove that the proposed FWA-GPC performs better than the conventional AP optimization approaches.

A New Image Clustering Method Based on the Fuzzy Harmony Search Algorithm and Fourier Transform

  • Bekkouche, Ibtissem;Fizazi, Hadria
    • Journal of Information Processing Systems
    • /
    • 제12권4호
    • /
    • pp.555-576
    • /
    • 2016
  • In the conventional clustering algorithms, an object could be assigned to only one group. However, this is sometimes not the case in reality, there are cases where the data do not belong to one group. As against, the fuzzy clustering takes into consideration the degree of fuzzy membership of each pixel relative to different classes. In order to overcome some shortcoming with traditional clustering methods, such as slow convergence and their sensitivity to initialization values, we have used the Harmony Search algorithm. It is based on the population metaheuristic algorithm, imitating the musical improvisation process. The major thrust of this algorithm lies in its ability to integrate the key components of population-based methods and local search-based methods in a simple optimization model. We propose in this paper a new unsupervised clustering method called the Fuzzy Harmony Search-Fourier Transform (FHS-FT). It is based on hybridization fuzzy clustering and the harmony search algorithm to increase its exploitation process and to further improve the generated solution, while the Fourier transform to increase the size of the image's data. The results show that the proposed method is able to provide viable solutions as compared to previous work.

개미군 최적화 방법을 이용한 Location Area Planning (Location Area Planning Using Ant Colony Optimization)

  • 김성수;김형준;김기동
    • 경영과학
    • /
    • 제25권2호
    • /
    • pp.73-80
    • /
    • 2008
  • The location area planning is to assign cells to the location areas of a wireless communication network in an optimum manner. The two important cost components are cost of location update and cost of paging that are of conflicting in nature; i.e., minimizing the registration cost might increase the search cost. Hence, it is important to find a compromise between the location update and paging operations such that the cost of mobile terminal location tracking cost is a minimum. The complete mobile network is divided into location areas. Each location area consists of a group of cells. In fact this is shown to be an NP-complete problem in an earlier study. In this paper, we use an ant colony optimization method to obtain the best/optimal group of cells for a given a network.

파티클군집최적화 방법을 적용한 위치관리시스템 최적 설계 (Optimal Design of Location Management Using Particle Swarm Optimization)

  • 변지환;김성수;장시환;김연수
    • 경영과학
    • /
    • 제29권1호
    • /
    • pp.143-152
    • /
    • 2012
  • Location area planning (LAP) problem is to partition the cellular/mobile network into location areas with the objective of minimizing the total cost in location management. The minimum cost has two components namely location update cost and searching cost. Location update cost is incurred when the user changes itself from one location area to another in the network. The searching cost incurred when a call arrives, the search is done only in the location area to find the user. Hence, it is important to find a compromise between the location update and paging operations such that the cost of mobile terminal location tracking cost is a minimum. The complete mobile network is divided into location areas. Each location area consists of a group of cells. This partitioning problem is a difficult combinatorial optimization problem. In this paper, we use particle swarm optimization (PSO) to obtain the best/optimal group of cells for 16, 36, 49, and 64 cells network. Experimental studies illustrate that PSO is more efficient and surpasses those of precious studies for these benchmarking problems.

Topology, shape, and size optimization of truss structures using modified teaching-learning based optimization

  • Tejani, Ghanshyam G.;Savsani, Vimal J.;Patel, Vivek K.;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • 제2권4호
    • /
    • pp.313-331
    • /
    • 2017
  • In this study, teaching-learning based optimization (TLBO) is improved by incorporating model of multiple teachers, adaptive teaching factor, self-motivated learning, and learning through tutorial. Modified TLBO (MTLBO) is applied for simultaneous topology, shape, and size optimization of space and planar trusses to study its effectiveness. All the benchmark problems are subjected to stress, displacement, and kinematic stability constraints while design variables are discrete and continuous. Analyses of unacceptable and singular topologies are prohibited by seeing element connectivity through Grubler's criterion and the positive definiteness. Performance of MTLBO is compared to TLBO and state-of-the-art algorithms available in literature, such as a genetic algorithm (GA), improved GA, force method and GA, ant colony optimization, adaptive multi-population differential evolution, a firefly algorithm, group search optimization (GSO), improved GSO, and intelligent garbage can decision-making model evolution algorithm. It is observed that MTLBO has performed better or found nearly the same optimum solutions.