• Title/Summary/Keyword: Group Mobile Users

Search Result 194, Processing Time 0.021 seconds

A Study of Performance Analysis on Effective Multiple Buffering and Packetizing Method of Multimedia Data for User-Demand Oriented RTSP Based Transmissions Between the PoC Box and a Terminal (PoC Box 단말의 RTSP 운용을 위한 사용자 요구 중심의 효율적인 다중 수신 버퍼링 기법 및 패킷화 방법에 대한 성능 분석에 관한 연구)

  • Bang, Ji-Woong;Kim, Dae-Won
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.1
    • /
    • pp.54-75
    • /
    • 2011
  • PoC(Push-to-talk Over Cellular) is an integrated technology of group voice calls, video calls and internet based multimedia services. If a PoC user can not participate in the PoC session for various reasons such as an emergency situation, lack of battery capacity, then the user can use the PoC Box which has a similar functionality to the MM Box in the MMS(Multimedia Messaging Service). The RTSP(Real-Time Streaming Protocol) method is recommended to be used when there is a transmission session between the PoC box and a terminal. Since the existing VOD service uses a wired network, the packet size of RTSP-based VOD service is huge, however, the PoC service has wireless communication environments which have general characteristics to be used in RTSP method. Packet loss in a wired communication environments is relatively less than that in wireless communication environment, therefore, a buffering latency occurs in PoC service due to a play-out delay which means an asynchronous play of audio & video contents. Those problems make a user to be difficult to find the information they want when the media contents are played-out. In this paper, the following techniques and methods were proposed and their performance and superiority were verified through testing: cross-over dual reception buffering technique, advance partition multi-reception buffering technique, and on-demand multi-reception buffering technique, which are designed for effective picking up of information in media content being transmitted in short amount of time using RTSP when a user searches for media, as well as for reduction in playback delay; and same-priority packetization transmission method and priority-based packetization transmission method, which are media data packetization methods for transmission. From the simulation of functional evaluation, we could find that the proposed multiple receiving buffering and packetizing methods are superior, with respect to the media retrieval inclination, to the existing single receiving buffering method by 6-9 points from the viewpoint of effectiveness and excellence. Among them, especially, on-demand multiple receiving buffering technology with same-priority packetization transmission method is able to manage the media search inclination promptly to the requests of users by showing superiority of 3-24 points above compared to other combination methods. In addition, users could find the information they want much quickly since large amount of informations are received in a focused media retrieval period within a short time.

Development of Education Materials for Healthy Consumption of Milk in a Card News Format for Korean Adults (성인의 바른 우유 섭취를 위한 카드뉴스 형식의 교육자료 개발)

  • Kim, Sun Hyo
    • Journal of Korean Home Economics Education Association
    • /
    • v.32 no.3
    • /
    • pp.97-110
    • /
    • 2020
  • The purpose of this study is to develop milk education materials for adults based on the scientific basis of right milk consumption in the format of card news that can be easily accessed on a mobile phone or the internet and has high impact. The topics to be included in the card news were selected based on the findings from literature analysis and focus group interviews with 10 adults(32.0±6.4 years). For the eight selected topics, effective communication was made by suggesting some information that users want to know while reflecting adult eating habits, lifestyle habits, and nutrition and health interests. The card news draft was reviewed by researcher and consulting experts, and then questionnaire survey was conducted using Likert 5-point scales by 50 adults(42.7±10.2 years). Based on the results of the review, consultation and questionnaire survey, a final draft of the card news consisting of 11 cuts was completed. Card news proposal is expected to produce educational effects, since the respondents showed high satisfaction with the card news (higher than 4 on the 5-point scales) according to the questionnaire survey. Adults can easily access and use the card news developed in this study, and thus this card news is expected to increase milk consumption in adulthood and improve nutrition and health through friendly and systematic milk education.

A Study on Trust Transfer in Traditional Fintech of Smart Banking (핀테크 서비스에서 오프라인에서 온라인으로의 신뢰전이에 관한 연구 - 스마트뱅킹을 중심으로 -)

  • Ai, Di;Kwon, Sun-Dong;Lee, Su-Chul;Ko, Mi-Hyun;Lee, Bo-Hyung
    • Management & Information Systems Review
    • /
    • v.36 no.3
    • /
    • pp.167-184
    • /
    • 2017
  • In this study, we investigated the effect of offline banking trust on smart banking trust. As influencing factors of smart banking trust, this study compared offline banking trust, smart banking's system quality, and information quality. For the empirical study, 186 questionnaire data were collected from smart banking users and the data were analyzed using Smart-PLS 2.0. As results, it was verified that there is trust transfer in FinTech service, by the significant effect of offline banking trust on smart banking trust. And it was proved that the effect of offline banking trust on smart banking trust is lower than that of smart banking itself. The contribution of this study can be seen in both academic and industrial aspects. First, it is the contribution of the academic aspect. Previous studies on banking were focused on either offline banking or smart banking. But this study, focus on the relationship between offline banking and online banking, proved that offline banking trust affects smart banking trust. Next, it is the industrial contribution. This study showed that offline banking characteristics of traditional commercial banks affect the trust of emerging smart banking service. This means that the emerging FinTech companies are not advantageous in the competition of trust building compared to traditional commercial banks. Unlike traditional commercial banks, the emerging FinTech is innovating the convenience of customers by arming them with new technologies such as mobile Internet, social network, cloud technology, and big data. However, these FinTech strengths alone can not guarantee sufficient trust needed for financial transactions, because banking customers do not change a habit or an inertia that they already have during using traditional banks. Therefore, emerging FinTech companies should strive to create destructive value that reflects the connection with various Internet services and the strength of online interaction such as social services, which have an advantage over customer contacts. And emerging FinTech companies should strive to build service trust, focused on young people with low resistance to new services.

  • PDF

SKU recommender system for retail stores that carry identical brands using collaborative filtering and hybrid filtering (협업 필터링 및 하이브리드 필터링을 이용한 동종 브랜드 판매 매장간(間) 취급 SKU 추천 시스템)

  • Joe, Denis Yongmin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.77-110
    • /
    • 2017
  • Recently, the diversification and individualization of consumption patterns through the web and mobile devices based on the Internet have been rapid. As this happens, the efficient operation of the offline store, which is a traditional distribution channel, has become more important. In order to raise both the sales and profits of stores, stores need to supply and sell the most attractive products to consumers in a timely manner. However, there is a lack of research on which SKUs, out of many products, can increase sales probability and reduce inventory costs. In particular, if a company sells products through multiple in-store stores across multiple locations, it would be helpful to increase sales and profitability of stores if SKUs appealing to customers are recommended. In this study, the recommender system (recommender system such as collaborative filtering and hybrid filtering), which has been used for personalization recommendation, is suggested by SKU recommendation method of a store unit of a distribution company that handles a homogeneous brand through a plurality of sales stores by country and region. We calculated the similarity of each store by using the purchase data of each store's handling items, filtering the collaboration according to the sales history of each store by each SKU, and finally recommending the individual SKU to the store. In addition, the store is classified into four clusters through PCA (Principal Component Analysis) and cluster analysis (Clustering) using the store profile data. The recommendation system is implemented by the hybrid filtering method that applies the collaborative filtering in each cluster and measured the performance of both methods based on actual sales data. Most of the existing recommendation systems have been studied by recommending items such as movies and music to the users. In practice, industrial applications have also become popular. In the meantime, there has been little research on recommending SKUs for each store by applying these recommendation systems, which have been mainly dealt with in the field of personalization services, to the store units of distributors handling similar brands. If the recommendation method of the existing recommendation methodology was 'the individual field', this study expanded the scope of the store beyond the individual domain through a plurality of sales stores by country and region and dealt with the store unit of the distribution company handling the same brand SKU while suggesting a recommendation method. In addition, if the existing recommendation system is limited to online, it is recommended to apply the data mining technique to develop an algorithm suitable for expanding to the store area rather than expanding the utilization range offline and analyzing based on the existing individual. The significance of the results of this study is that the personalization recommendation algorithm is applied to a plurality of sales outlets handling the same brand. A meaningful result is derived and a concrete methodology that can be constructed and used as a system for actual companies is proposed. It is also meaningful that this is the first attempt to expand the research area of the academic field related to the existing recommendation system, which was focused on the personalization domain, to a sales store of a company handling the same brand. From 05 to 03 in 2014, the number of stores' sales volume of the top 100 SKUs are limited to 52 SKUs by collaborative filtering and the hybrid filtering method SKU recommended. We compared the performance of the two recommendation methods by totaling the sales results. The reason for comparing the two recommendation methods is that the recommendation method of this study is defined as the reference model in which offline collaborative filtering is applied to demonstrate higher performance than the existing recommendation method. The results of this model are compared with the Hybrid filtering method, which is a model that reflects the characteristics of the offline store view. The proposed method showed a higher performance than the existing recommendation method. The proposed method was proved by using actual sales data of large Korean apparel companies. In this study, we propose a method to extend the recommendation system of the individual level to the group level and to efficiently approach it. In addition to the theoretical framework, which is of great value.