• Title/Summary/Keyword: Groundwater table

Search Result 183, Processing Time 0.024 seconds

Pre-reinforcing Grouting a Sand Gravel Layer for Tunnelling (모래자갈층에서 터널시공을 위한 굴착 전 그라우팅 보강 사례)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.466-474
    • /
    • 2016
  • Pre-reinforcement with umbrella arch grouting is conducted around a tunnel where a portion of the upper part of the tunnel is located in a sand and gravel layer. Surroundings of a first tunnel situated below groundwater table are reinforced with LW or SSM that is composed of ultra-fine cement and injected into multi-stages through large diameter steel pipes. With them, a first tunnel is safely excavated without both leaking of groundwater and fallings of sand and gravel from the arch. A second tunnel where groundwater is drained down to the bedrock is reinforced with jet grouting. The effect of the pre-grouting reinforcement is monitored by checking whether groundwater is dripping or sand or gravel is falling from the arch of the tunnels.

Hydrogeologic Parameter Estimation by Using Tidal Method in a Fractured Rock Aquifer (단열암반 대수층에서 조석분석법을 이용한 수리상수 추정)

  • Shim Byoung Ohan;Chung Sang Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2004
  • The oceanic tides have an effect on groundwater levels in coastal fractured rock aquifers. The observed groundwater table fluctuations caused by the effective stress through an aquifer are shown as sine curves similar with tidal fluctuation. To estimate a hydrogeologic parameter, tidal method is utilized with groundwater level fluctuations of two monitoring wells. Cross correlation function is used to calculate time lags between observed groundwater levels and tide, and the deeper well shows longer time lag. The storage coefficients calculated by using tidal efficiency and time lag show large differences. The storage coefficients obtained by using time lags are close to the result of slug test, and that of the deeper well shows closer value by slug test. The tidal efficiency is unsatisfied to apply in the tidal method because of an effect of phreatic aquifer and the vertical flow of groundwater through fractured confining bed. This tidal method can be an economical and effective way to define the parameter by considering the location of observation well and hydrogeologic characteristics of a coastal aquifer.

Evaluation of Sustainable Yield for a Small Rural Watershed (농촌 소유역의 지하수 지속가능개발량 평가)

  • Park, Ki-Jung;Chung, Sang-Ok
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.581-587
    • /
    • 2004
  • An experimental watershed was selected and sustainable yield was evaluated. The study area(3.89$\textrm{km}^2$) was located in Kyungpook Sangju Yangchon-dong. The visual MODFLOW was verified by comparing the observed and estimated groundwater table. The analysis of the observed and estimated groundwater table from 19 March 2003 to 18 March 2004 showed that the average error was 0.0009m, the error sum of squares 7.245$m^2$, absolute mean error 0.094 m, root mean square error 0.141m, and the model efficiency was 92%. The normal, 10- and 30- year drought frequency years were selected and sustainable yield was evaluated in these periods. Ratios of sustainable yield to the annual infiltration were 14.5% for the normal year(1992), 15.1% for the 10-year(1994), and 15.2% for the 30-year drought frequency year(1982). The results of this study can be used as a basic information for groundwater development and management planning considering regional characteristics.

The Effect of Seepage Forces on the Ground Reaction Curve of Tunnel (침투력이 터널의 지반반응곡선에 미치는 영향)

  • Lee Seok-Won;Jung Jong-Won;Nam Seok-Woo;Lee In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.87-98
    • /
    • 2005
  • When a tunnel is excavated below groundwater table, the groundwater flows into the excavated wall of tunnel and seepage forces are acting on the tunnel wall. The ground reaction curve is defined as the relationship between internal pressure and radial displacement of tunnel wall. Therefore, the ground reaction curve is significantly affected by seepage forces. In this study, the theoretical solutions of ground reaction curves were derived for both the dry condition and the seepage forces. The theoretical solutions derived were validated by numerical analysis. The ground reaction curves with the support characteristic curve were also analyzed in various conditions of groundwater table. Finally, the theoretical solutions of the ground reaction curve derived in this study can be utilized easily to determine the appropriate time of support systems, the stiffness of support system and so forth for the reasonable design.

The ground reaction curve of underwater tunnels considering seepage forces (침투력을 고려한 터널의 지반반응곡선)

  • Shin, Young-Jin;Kim, Byoung-Min;Shin, Jong-Ho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.2
    • /
    • pp.183-204
    • /
    • 2007
  • When a tunnel is excavated below groundwater table, the groundwater flows into the excavated wall of tunnel and seepage forces are acting on the tunnel wall. Such seepage forces significantly affect the ground reaction curve which is defined as the relationship between internal pressure and radial displacement of tunnel wall. In this paper, seepage forces arising from the ground water flow into a tunnel were estimated quantitatively. Magnitude of seepage forces was decided based on hydraulic gradient distribution around tunnel. Using these results, the theoretical solutions of ground reaction curve with consideration of seepage forces under steady-state flow were derived. A no-support condition and a supported condition with grouted bolts and shotcrete lining were considered, respectively. The theoretical solution derived in this study was validated by numerical analysis. The changes in the ground reaction curve according to various cover depths and groundwater table conditions were investigated. Based on the results, the application limit of theoretical solutions was suggested.

  • PDF

Effect of Groundwater Flow on the Behavior of Circular Vertical Shaft (지하수 유동을 고려한 원형수직구 거동분석)

  • Park, Heejin;Park, Jongjeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.29-39
    • /
    • 2022
  • This study investigates the behavior of a circular vertical shaft wall in the absence and presence of a groundwater table. The effects of wall deflection, backfill settlement, and earth pressure distribution around the circular vertical shaft caused by sequential excavations were quantified. The vertical shaft was numerically simulated for different excavation depths of the bearing layer (weathered soil, weathered rock, soft rock) and transient and steady-state flows in the absence of a groundwater table. The backfill settlements and influential area were much larger under transient flow conditions than in steady-state flow. On the contrary, the horizontal wall deflection was much larger in steady state than in the transient state. Moreover, less settlement was induced as the excavation depth increased from weathered soil to weathered rock to the soft rock layer. Finally, the horizontal stresses under steady- and transient-state flow conditions were found to exceed Rankine's earth pressure. This effect was stronger in the deeper rock layers than in the shallow soil layers.

Chemical Characteristics and Pollution of Groundwater in the Ponchon Area, Kwangju (광주, 본촌지역의 지하수의 수화학적 특성과 오염)

  • 양해근;김인수;최희철;김정우
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.83-95
    • /
    • 2001
  • In this study, the contaminated status of groundwater under Ponchon Basin, Kwangju-city was analyzed by hydrogeological survey. Though the distribution of groundwater hydraulic head was similar with the ground elevation, the flow system of groundwater was changed due to overpumping in the industrial area. Paddy field and residential area which were located in the north part of the basin had relatively high concentrations of Cl, N $a^{+}$ and N $O_3$$^{[-10]}$ in the groundwater. Southern part of the basin which most industrial area occupied had relatively high concentrations of HC $O_3$, $Ca^{2+}$, $Mg^{2+}$ and Zn. Groundwater was contaminated by C $l^{[-10]}$ and N $O_3$$^{[-10]}$ due to the infiltration of domestic sewage and factory wastewater. In the Cl case, C $l^{[-10]}$ had a tendency of distribution over the water shed along with the contaminated source. The drawdown of groundwater due to overpumping caused more vertical movement of contaminant than lateral movement. If the overpumping continues in the industrial area, the groundwater flow system will be more affected and the groundwater will be lowered in the north part of basin. It is clear that contamination by C $l^{[-10]}$ and N $O_3$$^{[-10]}$ due to domestic sewage and factory wastewater will spread through the whole basin area.rea.

  • PDF

Temporal Variations of Submarine Groundwater Discharge (SGD) and SGD-driven Nutrient Inputs in the Coastal Ocean of Jeju Island (제주도 연안에서 해저 지하수 및 지하수 기원 영양염류 유입량의 시간적 변화)

  • Hwang, Dong-Woon;Koh, Byoung-Seol
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.252-261
    • /
    • 2012
  • To determine the temporal variations of submarine groundwater discharge (SGD) and SGD-driven nutrients inputs, we measured the seepage rate and the nutrient concentrations of pore water/groundwater in Bangdu Bay of Jeju Island at two and three month intervals from September 2009 to September 2010. The seepage rate of groundwater ranged from 0 to 330 cm/day (average ~170 cm/day) during the five sampling periods, which increased sharply from high tide to low tide due to changes in hydraulic pressure gradient between water table in land and water sea level in the coastal ocean by the tidal cycles. The submarine inputs of groundwater were also relatively higher in summer than in winter. The nutrient fluxes from SGD were about 90~100%, 70~95%, and 65~100% of the total input (except from open ocean waters) for dissolved inorganic nitrogen (DIN), phosphorus (DIP), and silicate (DSi), respectively, potentially supporting about 0.9~33 g $carbon/m^2/day$ of new primary production in Baugdu Bay. Thus, our study suggests that SGD-driven nutrients may play an important role in the eutrophication and biological production in the coastal ocean of Jeju Island.

Considerations on the Specific Yield Estimation Using the Relationship between Rainfall and Groundwater Level Variations (강우 대비 지하수위 변동량을 이용한 비산출율 추정 기법의 적용성 고찰)

  • Kim, Gyoo-Bum;Choi, Doo-Houng;Jeong, Jae-Hoon
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.61-70
    • /
    • 2010
  • In case of groundwater recharge estimation using water table fluctuation method, specific yield affects the accuracy and confidence level of recharge rate. Nevertheless, there have been few studies on the method for the accurate estimation of specific yield in Korea. Specific yield estimated from the relationship between rainfall and groundwater levels is reasonable compared to the other methods. However, lots of factors such as artificial pumping, evapotranspiration by the plants, and a sudden increase in water levels by a heavy rainfall can affect the pattern of groundwater levels' fluctuation and make an over-estimated or under-estimated specific yield. This study obtained a reasonable specific yield by using a daily or 12 hourly average of rainfall and groundwater levels measured in a dry season.

Groundwater-surface water interaction of the upstream area of the dam composed of accumulated sediments and reservoir in the upstream area of Searsvill Dam (Searsville 댐 상류부를 대상으로 한 퇴적토와 저수지로 구성된 지하수 시스템의 지하수-지표수 상호작용)

  • Kim, Dongkyun
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.43-50
    • /
    • 2013
  • The groundwater-surface water interaction of Searsville Lake area, California, US was analyzed using 3-dimensional groundwater model. This study especially focuses on investigating the groundwater head drawdown near the lake when the abrupt decline of the lake water table occurs due to the implementation of the options to remove the accumulated sediments along the dam. The result of the investigation revealed that the groundwater head drawdown near the lake is not significant enough to adversely affect the wetland habitat of the area regardless of the hydrogeologic parameters of the aquifers. We expect this result provides useful information to the similar Korean case studies in which the surface water level abruptly changes due to the operation of the hydraulic gates of dams and wiers and the corresponding environmental impact should be considered.