• Title/Summary/Keyword: Groundwater table

Search Result 183, Processing Time 0.03 seconds

Estimation of the Groundwater Recharge Rate during a Rainy Season at a Headwater Catchment in Gwangneung, Korea (광릉 원두부 소유역에서의 우기 중 지하수 함양률 평가)

  • Choi, In-Hyuk;Woo, Nam-Chil;Kim, Su-Jin;Moon, Sang-Ki;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.75-87
    • /
    • 2007
  • Groundwater recharge rates were estimated and compared in a headwater catchment at the Gwangneung Supersite using three different methods: water-table fluctuation (WTF), mass balance, and hydrograph separation techniques. Data were obtained during the rainy season from June to September 2005. Two different WTF methods estimated the groundwater recharge rate as 25.9% and 23.6%. The mass balance calculation of chloride ions indicated recharge rates of 13.4% on average. Baseflow separation using chloride ion as a tracer from six storm hydrographs produced a 14.0% net baseflow rate on average. Because of the implicit assumption of a long-term steady state without storage change, recharge rates calculated by mass balance and hydrograph separation were smaller than those done with WTF methods, which include the amount of increased storage due to the water-level rise. Subsequently, the WTF method is superior to others in the estimation of groundwater recharge rate to comprehend the dynamic characteristics of the hydrologic cycle.

Tunneling in Severe Groundwater Inflow Condition (지하수 과다유입 조건하에서의 터널굴착)

  • Lee, Young-Nam;Kim, Dae-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.2
    • /
    • pp.67-76
    • /
    • 2006
  • For a hydro power plant project, the headrace tunnel having a finished diameter of 3.3 m was constructed in volcanic rocks with well-developed vertical joint and high groundwater table. The intake facility was located 20.3km upstream of the powerhouse and headrace tunnel of 20km in length and penstock of 440m in height connected the intake and the powerhouse. The typical caldera lake, Lake Toba set the geology at the site the caving of the ground caused tension cracks in the vertical direction to be developed and initial stresses at the ground to be released. High groundwater table(the maximum head of 20bar) in the area of well-connected vertical joints delayed the progress of tunnel excavation severely due to the excessive inflow of groundwater. The excavation of tunnel was made using open-shield type TBM and mucking cars on the rail. High volume of water inflowraised the water level inside tunnel to 70cm, 17% of tunnel diameter (3.9m) and hindered the mucking of spoil under water. To improve the productivity, several adjustments such as modification of TBM and mucking cars and increase in the number of submersible pumps were made forthe excavation of severe water inflow zone. Since the ground condition encountered during excavation turned out to be much worse, it was decided to adopt PC segment lining instead of RC lining. Besides, depending on the conditions of the water inflow, rock mass condition and internal water pressure, one of the invert PC segment lining with in-situ RC lining, RC lining and steel lining was applied to meet the site specific condition. With the adoption of PC segment lining, modification of TBM and other improvement, the excavation of the tunnel under severe groundwater condition was successfully completed.

  • PDF

Spatial Characteristics of Vegetation Development and Groundwater Level in Sand Dunes on a Natural Beach (해안사구의 지하수위와 식생 발달의 공간적 특성 연구)

  • Park, JungHyun;Yoon, Han-sam;Jeon, Yong-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.218-226
    • /
    • 2016
  • Field observations were used to study the characteristics and influence of groundwater level fluctuations on vegetation development on the natural beach of a sandy barrier island, in the Nakdong River estuary. The spatial/temporal fluctuations of the groundwater level and the interactions with the external forces (weather, ocean wave and tide) were analyzed. The results indicated that when it rains the groundwater level rises. During summer, when precipitation intensity is greater than 20 mm/hour, it rose rapidly over 20 cm. Subsequently, it fell gradually during periods of no precipitation. Seasonal characteristics indicated that the groundwater level was high during the summer rainy season and tended to fall in the winter dry season. The time-averaged groundwater level, observed from the four observations over 3 years (2012-2014), was about 1.47 m, higher than mean sea level (M.S.L.). It was shown that the average annual groundwater level rises toward the land rather than showing intertidal patterns observation. Differences in the presence or absence of a coastal sand dunes affected the progress of vegetation. In other words, in environments of saltwater intrusion where the groundwater level varies, dependent on the distance from the shoreline and bottom slope, sand dunes can be provided to affect soil conditions and groundwater, so that vegetation can be grown reliably.

Hydrogeological Characteristics of the Wangjeon-ri PCWC area, Nonsan-city, with an Emphasis on Water Level Variations (논산시 왕전리 수막재배지역의 지하수위 변화)

  • Cho, Byong-Wook;Yun, Uk;Lee, Byeong-Dae;Ko, Kyung-Seok
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.195-205
    • /
    • 2012
  • We evaluated the results of pumping tests, the amount of groundwater used by Protected Cultivation with Water Curtain (PCWC), and monthly depth to water table (DTW) at the Wangjeon-ri area, Nonsan City, to elucidate the cause of a decrease in pumping rate during the winter PCWC season. The transmissivity and storage coefficient at eight sites where the major aquifer is alluvium, vary from 119.9 to $388.1m^2/d$ and $1.5{\times}10^{-4}$ to $5.5{\times}10^{-4}$, respectively. The pumping rate for PCWC during three months (Dec. to Feb.) averaged about $8,100m^3/d$ and the maximum water level in the area varied by about 10 m. Groundwater levels had fully recovered by August-five months after pumping for PCWC had ceased. These observations indicate that the pumping rate during the winter PCWC season was excessive compared with groundwater productivity in the area. Groundwater level in the central PCWC area varied from -3.0 to 4.38 m, exceeding the water level of the Nosung Stream for only three months (Aug. to Oct.). This result indicates that Nosung Stream recharges the area during the period from November to July. To solve the problem of reduced pumping rate during the winter PCWC season, it would be necessary to reduce the amount of groundwater used for PCWC or to develop an artificial recharge system using recycled groundwater.

Interpretation of shallow geological structure by applying GIS to geophysical data (물리탐사자료의 GIS 복합처리에 의한 천부지질구조 해석)

  • 송성호;정형재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.123-126
    • /
    • 1998
  • We have conducted surface electrical resistivity surveys along with the electrical logging at Bookil-Myun, Chungwon-Goon, Choongchungbuk-Do to determine the depths of basement and water table, and for the purpose of preparing the basic input data for hydrogeologic model combined with GIS. A twenty lines of dipole-dipole array survey and a twenty-five stations of resistivity sounding were performed and ten holes were employed for electrical logging to cross check the surface data. A combined interpretation gave the quantitative information of the shallow geologic structure over the area and we constructed layers using the grid analysis of Arc/info. The constructed layers were turned out to be similar to the geologic structure confirmed from the drilling data and we concluded that the methodology adopted in this study would be applicable to hydrogeologic model setup as a tool of providing the basic input data.

  • PDF

Modeling Infiltration and Redistribution for Multistorm Runoff Events

  • 유동렬;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.74-77
    • /
    • 2000
  • Infiltration and water flow in the upper soil layer of a deep water table aquifer are modeled for multistorm runoff events. The infiltration process is developed using the sharp wetting front model of Green and Ampt, and the following redistribution process is modeled using the gravity drained rectangular approximation. The Brooks-Corey model [Brooks and Corey, 1966] is adopted to relate the effective soil saturation, the tension head, and the unsaturated hydraulic conductivity Firstly, the infiltration and redistribution model is developed for a single stom runoff event. Then a couple of events combined for multistorm runoff events. In the later case, infiltration rate of the second rainfall is strongly influenced by the length of the rainfall hiatus and soil moisture profile.

  • PDF

배수조건에 따른 폐타이어의 용출특성 연구

  • Jo Jin-U;Jeong Ha-Ik;Yun Yeo-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.203-206
    • /
    • 2006
  • 본 논문에서는 폐타이어를 지반보강재로 재활용하는 경우 배수조건에 따른 용출특성을 알아보기 위하여 실내실험을 실시하였다 배수조건과 비배수조건으로 연속식 용출시험을 수행하여. 유출수의 pH, 탁도, TOC, Zn 농도를 분석하였다. 실험결과 배수조건인 경우 시간이 경과할수록 용출 농도가 감소하여 주변 환경에 큰 영향을 미치지 않을 것으로 판단되나, 비배수 조건인 경우 용출 농도가 증가하는 현상을 발견할 수 있었다. 배수조건은 폐타이어가 지하수위 위에 존재하는 경우이며, 비배수조건은 폐타이어가 지하수위 아래에 존재하는 경우에 해당한다. 특히, 폐타이어가 지하수위 아래에 위치하는 경우 지오텍스타일의 클로깅 등으로 인하여 배수가 원활히 되지 않을 경우에는 주변환경에 큰 영향을 미칠 것으로 예상되며 이에 대한 각별한 주의가 필요할 것이다.

  • PDF

THE PHYSICALLY-BASED SOIL MOISTURE BALANCE MODEL DEVELOPMENT AND APPLICATIONS ON PADDY FIELDS

  • Park, Jae-Young;Lee, Jae-Hyoung
    • Water Engineering Research
    • /
    • v.1 no.3
    • /
    • pp.243-256
    • /
    • 2000
  • This physically-based hydrologic model is developed to calculate the soil-moisture balance on paddy fields. This model consists of three modules; the first is the unsaturated module, the second is the rice evapotranspiration module with SPAC(soil-plant-atmospheric-continuum), and the third is the groundwater and open channel flows based upon the interrehtionship module. The model simulates the hydrlogical processes of infiltration, soil water storage, deep perocolation or echarge to the shallow water table, transpiration and evaporation from the soil surface and also the interrelationship of the groundwater and river flow exchange. To verify the applicability of the developed model, it was applied to the Kimjae Plains, located in the center of the Dongjin river basin in Korea, during the most serious drought season of 1994. The result shows that the estimated water net requirement was 757mm and the water deficit was about 5.9% in this area in 1994. This model can easily evaluate the irrigated water quantity and visualize the common crop demands and soil moisture conditions.

  • PDF

The Estimation of Groundwater Recharge with Spatial-Temporal Variability at the Musimcheon Catchment (시공간적 변동성을 고려한 무심천 유역의 지하수 함양량 추정)

  • Kim Nam-Won;Chung Il-Moon;Won Yoo-Seung;Lee Jeong-Woo;Lee Byung-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.9-19
    • /
    • 2006
  • The accurate estimation of groundwater recharge is important for the proper management of groundwater systems. The widely used techniques of groundwater recharge estimation include water table fluctuation method, baseflow separation method, and annual water balance method. However, these methods can not represent the temporal-spatial variability of recharge resulting from climatic condition, land use, soil storage and hydrogeological heterogeneity because the methods are all based on the lumped concept and local scale problems. Therefore, the objective of this paper is to present an effective method for estimating groundwater recharge with spatial-temporal variability using the SWAT model which can represent the heterogeneity of the watershed. The SWAT model can simulate daily surface runoff, evapotranspiration, soil storage, recharge, and groundwater flow within the watershed. The model was applied to the Musimcheon watershed located in the upstream of Mihocheon watershed. Hydrological components were determined during the period from 2001 to 2004, and the validity of the results was tested by comparing the estimated runoff with the observed runoff at the outlet of the catchment. The results of temporal and spatial variations of groundwater recharge were presented here. This study suggests that variations in recharge can be significantly affected by subbasin slope as well as land use.

A Study on Hydrogeologic, Hydrodispersive Characterization and Groundwater Contamination Assessment of an H-site (H 연구지역의 수리지질-수리분산특성과 지하수 오염가능성 평가연구)

  • Hahn, Jeongsang
    • Economic and Environmental Geology
    • /
    • v.27 no.3
    • /
    • pp.295-311
    • /
    • 1994
  • A comprehensive in-situ tests are performed to define the hydrogeologic and hydrodispersive characteristics such as hydraulic conductivities, longitudinal dispersivity, and average linear velocities as well as conducting flow-net analysis at the study area. The results show that the study area is very heterogeneous so that hydraulic conductivities range from $6.45{\times}10^{-7}$ to $1.15{\times}10^{-5}m/s$ with average linear velocities of 0.34~0.62m/day. Whole groundwater in upper-most aquifer is discharging into the sea with specific discharge rate of $7.2{\times}10^{-3}$ to $1.3{\times}10^{-2}m/day$. The longitudinal dispersivity of the aquifer is estimated about 4.8m through In-situ injection phase test. The area is highly vulnerable to potential contaminant sources due to it's high value of DRASTIC index ranging from 139 to 155 and also under water table condition with very shallow groundwater level. To delineate contaminant plumes of toxic NaOH and carcinogenic benzene when these substances are assumed to be leaked through existing TSDF at the study area by unexpected accidents or spill, Aquifer Simulation Model (ASM) including Flow and Transport Model is used. Te simulated results reveal that the size of NaOH plume after 5 years continuous leak is about $250{\times}100m$ and benzene after 10 years, $490{\times}100m$. When the groundwater is abstracted about 50 days, which is maximum continuously sustained no-precipitation period during 30 years, with pumping rate of $100m^3/day$, THWELL program shows that the groundwater is adversly affected by sea water intrusion.

  • PDF