• Title/Summary/Keyword: Groundwater system

Search Result 1,192, Processing Time 0.021 seconds

Numerical Simulations for Optimal Utilization of Geothermal Energy under Groundwater-bearing Conditions (지하수 부존지역에서 최적 지열에너지 활용방식 수치 모의)

  • Kim, Jin-Sung;Cha, Jang-Hwan;Song, Sung-Ho;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.487-499
    • /
    • 2014
  • While the vertical open type of heat exchanger is more effective in areas of abundant groundwater, and is becoming more widely used, the heat exchanger most commonly used in geothermal heating and cooling systems in Korea is the vertical closed loop type. In this study, we performed numerical simulations of the optimal utilization of geothermal energy based on the hydrogeological and thermal properties to evaluate the efficiency of the vertical open type in areas of abundant groundwater supply. The first simulation indicated that the vertical open type using groundwater directly is more efficient than the vertical closed loop type in areas of abundant groundwater. Furthermore, a doublet system with separated injection and extraction wells was more efficient because the temperature difference (${\Delta}$) between the injection and extraction water generated by heat exchange with the ground is large. In the second simulation, we performed additional numerical simulations of the optimal utilization of geothermal energy that incorporated heat transfer, distance, flow rate, and groundwater hydraulic gradient targeting a single well, SCW (standing column well), and doublet. We present a flow diagram that can be used to select the optimal type of heat exchanger based on these simulation results. The results of this study indicate that it is necessary to examine the adequacy of the geothermal energy utilization system based on the hydrogeological and thermal properties of the area concerned, and also on a review of the COP (coefficient of performance) of the geothermal heating and cooling system.

Modeling the Groundwater Flow in the Near-field of the Near-surface Disposal System (표층처분시스템 근계영역의 지하수 유동에 대한 모델링 연구)

  • Kim, Jung-Woo;Bang, Je Heon;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.119-131
    • /
    • 2020
  • A numerical model was developed using COMSOL Multiphysics to evaluate groundwater flow that causes radionuclide migration in the unsaturated zone of a near-surface disposal facility, which is considered as a domestic low and an intermediate-level radioactive waste disposal facility. Each scenario was modeled by constructing a two-dimensional domain that included the disposal vault, backfill, disposal cover, and unsaturated aquifer. A comparison of the continuous and intermittent rainfall conditions exhibited no significant difference in any of the factors considered except the wave pattern of water saturation. The input data, such as porosity and residual water content of the unsaturated aquifer, were observed to not have a significant effect on the groundwater flow. However, the hydraulic conductivity of the unsaturated aquifer was found to have a significant effect on the groundwater flow. Therefore, it is necessary to assess the hydraulic conductivity of an unsaturated aquifer to determine the extent of groundwater infiltration into the disposal vault.

Geochemical Study on the Uranium Anormaly around the Shinbo Talc Mine (I) -In the Light of Hydrochemical Properties- (신보활석광산 주변에 형성된 우라늄 이상치에 관한 지화학적 연구 (I) -수리화학적 특성을 중심으로-)

  • Chung, Jae-Il;Lee, Mu-seong;Na, Choon-Ki
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.101-110
    • /
    • 1998
  • The purpose of this study is to elucidate the source of U anormaly formed in stream water of the drainage system around the Shinbo talc mine area based on the hydrochemical properties of water masses including surface water and groundwater. The hydrochemical properties of water masses in the Shinbo talc mine area are divide into three types; Type I : $Ca(Mg)SO_4$ type with high U content as shown in the stream water flowout from the mine, Type II : $Ca(HCO_3)_2$ type with high U content as in deep groundwater, Type III : $Ca(HCO_3)_2$, type with low U content as in the other stream water and shallow groundwater. It is necessary to emphasize that in deducing the uranium source, a distinct discrimination between type I and type II is showed in their hydrothermal properties in spite of commonly having a high uranium content, which in turn means the occurrence of a different water-rock interaction processes between both type. All evidences suggest that type II groundwater have acted as a primary media in the transport of uranium and that, as the groundwater flows through the talc mineralization zone, water composition of type II was transformed into that of type I water as the results of a secondary water rock interaction process, caused by imposition of new mineralogically controlled thermodynamic constraints. Consequently, in the viewpoint of hydrochemical exploration, the investigation of the hydrologic circulation system and the hydrogeologic properties for the aquifer of type II groundwater shall be done first of all and will provide a crucial clue on tracing the uranium mineralization zone occurred in the Shinbo talc mine area.

  • PDF

Variation in Nitrate Contamination of Shallow Groundwater in a Farmland in Gyeonggi-do, Korea (경기도 지역 농경지의 천부 지하수 내 질산염 오염특성과 변화)

  • Lee, Eun-Jae;Woo, Nam-Chil;Lee, Byung-Sun;Kim, Yang-Bin
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.393-403
    • /
    • 2008
  • Hydrogeochemistry of groundwater was studied in order to identify the influence of cow manure, distributed to a farmland as organic fertilizer, on nitrate concentrations in shallow groundwater and its spatio-temporal variations. From monitoring wells, water levels were measured using automatic data loggers, and water samples collected and analyzed in Feb., April, June and Oct. 2007. The average electric conductivity and concentration of nitrate in the groundwater show the highest levels in April and decline in subsequent sampling times. Decreases in dissolved oxygen(DO) and nitrate concentrations from April to Oct. and corresponding increases in $HCO_3$ concentrations indicate denitrification processes by microorganisms. Spatial variation of nitrate concentration appeared to be affected by the redox conditions of groundwater controlled by geochemical reactions of Mn, Fe and DOC contents.

Feasibility Mapping of Groundwater Yield Characteristics using Weight of Evidence Technique based on GIS in the Pocheon Area (GIS 기반 Weight of Evidence 기법을 이용한 포천 지역의 지하수 산출특성 예측도 작성)

  • Heo Seon-Hee;Lee Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.493-503
    • /
    • 2005
  • In this study, the weight of evidence(WofE) technique based on GIS was applied to spatially estimate the groundwater yield characteristics at the Pocheon area In Gyunggi-do. The groundwater preservation depends on many hydro-geologic factors that include hydrologic data, land-use data, topographic data, geological map and other natural materials collected at the site, even with man-made things. All these data can be digitally processed and managed by GIS database. In the applied technique of WofE, the prior probabilities were estimated as the factors that affect the yield on lineament, geology, drainage pattern or river system density, landuse and soil. We calculated the value of the weight values, W+ and W-, of each factor and estimated the contrast value of it. Results by the groundwater yield characteristic computation using this scheme were presented feasibility map in the form of the posterior probability to the consideration of in-situ samples. It is concluded that this technique is regarded as one of the effective techniques for the feasibility mapping related to the estimation of groundwater-bearing potential zones and its spatial pattern.

Calculation of Radius of Influence and Evaluation of Applicability of Air Sparging/Soil Vapor Extraction system for the Remediation of Petroleum Contaminated Rail Site (유류로 오염된 철로지역의 지중정화를 위한 영향반경 산정과 공기주입법/토양증기추출법의 적용성 평가)

  • Cho, Chang-Hwan;Park, Joung-Ku;Kim, Yong-Deok;Seo, Chang-Il;Jin, Hai-Jin;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • The objectives of this study were to calculate the radius of influence (ROI) of well for an air-sparging (AS)/soil vapor extraction (SVE) system and to evaluate the applicability of the system applied for the remediation of the petroleum contaminated rail site. For air permeability test, three monitoring wells were installed at a location of 1.3 m, 2.3 m, 3.0 m from the extraction well. And the pressure of each monitoring well was measured by extracting air from the extraction well with the pressure and flow of $(-)2,600mmH_2O$ and $1.58m^3/min$. The ROI for an extraction well was calculated as 4.31 m. Air was injected into the injection well with the pressure and flow of $3,500mmH_2O$ and $0.6m^3/min$ to estimate the radius of influence for oxygen transfer. Oxygen concentrations of air from three monitoring wells were measured. The ROI of an injection well for oxygen transfer was calculated as 3.46 m. The 28 extraction wells and 19 injection wells were installed according to the ROI calculated. The AS/SVE system was operated eight hours a day for five months. The rail site was contaminated with the petroleum and concentrations of benzene, toluene, and xylene were over the 'Worrisome Standard' of the 'Soil Environment Conservation Act'. The contaminated area was estimated as $732m^2$ and contaminants were dispersed up to (-)3 m from the ground. During the operation period, soil samples were collected from 5 points and analyzed periodically. With the AS/SVE system operation, concentrations of benzene, toluene, and xylene were decreased from 7.5 mg/kg to 2.0 mg/kg, from 32.0 mg/kg to 23.0 mg/kg, from 35.5 mg/kg to 23.0 mg/kg, respectively. The combined AS/SVE system applied to the rail site contaminated with volatile organic compounds (VOCs) exhibited a high applicability. But the concentration of contaminants in soil were fluctuated due to the heterogeneous of soil condition. Also the effect of the remediation mechanisms was not clearly identified.

Analysis of domestic and overseas coastal groundwater management laws and policies (국내외 해안 지하수관리 법·정책 사례 분석)

  • Shim, Young-Gyoo;Chung, Il-Moon;Chang, Sun Woo
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.9
    • /
    • pp.633-643
    • /
    • 2024
  • Many coastal countries have developed and used a wide range of technologies and policy measures to protect freshwater aquifers and groundwater resources from seawater intrusion, and have established and implemented a foundation to legally and institutionally support them. This study covers coastal states in the eastern United States, the Netheland, India and Japan. The goal of this study is to analyze each country's legal and policy measures for coastal groundwater management. By introducing Jeju Island's groundwater standard level system, we aim to provide a basis for future discussions on groundwater management measures not only in Jeju Island but also in coastal areas of Korea. As a result of the analysis, despite the various contents and aspects of coastal groundwater management based on local issues and characteristics around the world, in order to achieve the common goal of securing a stable amount of groundwater withdrawal and preventing seawater intrusion and to maximize the efficiency of groundwater management, it is understood that attempts are being made to establish optimal management measures, laws, systems, and policies based on several key factors. First, considering the hydrogeological characteristics and status of coastal groundwater, a separate special management system is being established and implemented within the scope of the national groundwater management system. In addition, preventing and maintaining groundwater level decline through limiting the amount of groundwater withdrawal and preventing seawater intrusion are key policy goals and policy tools, and it is suppored by research and development. Finally, tt was found that synergy effects are being sought by using various other policy tools and measures in a complex manner.

Seasonal Variation of Surface Water Quality in a Catchment Contaminated by $NO_3-N$ (질산성 질소로 오염된 소유역 하천 수질의 계절 변화)

  • Kim Youn-Tae;Woo Nam-Chil;Lee Kwang-Sik;Song Yun-Goo
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.2
    • /
    • pp.20-27
    • /
    • 2005
  • The seasonal variation of water quality was studied in the Hwabongcheon. It runs though a small catchment where shallow groundwater was contaminated with $NO_3-N$ by intensive livestock facilities. A direct inflow of animal waste and incoming of contaminated groundwater affected its water quality. In the dry season, an important factor of water quality in the Hwabongcheon was direct inflow of animal waste. In the wet season, concentrations of $NO_3-N$ in the Hwabongcheon were elevated in spite of being diluted by precipitation. It could be explained by the effect of increased incoming of contaminated groundwater and showed by oxygen and hydrogen isotope values. $NO_3-N$ concentration in the Cheongmicheon was lower than that in the Hwabongcheon, so it increased next a junction. This effect was intense in wet season because $NO_3-N$ concentration in the Hwabongcheon was high.

Evaluation of the Possibility of Developing Organic Matter Indicators in Coastal Environments: Utilization of Dissolved Organic Carbon and Fluorescent Dissolved Organic Matter (연안환경에서 유기물 지표 개발을 위한 가능성 평가: 용존유기탄소와 형광용존유기물질 활용)

  • Lee, Min-Young;Yang, Kyungsun;Kim, Sunchan;Kim, Tae-Hoon
    • Ocean and Polar Research
    • /
    • v.43 no.2
    • /
    • pp.65-72
    • /
    • 2021
  • In order to evaluate the dissolved organic carbon (DOC) and fluorescent dissolved organic matter (FDOM), as indicators of organic matter in the coastal environments, we measured the concentrations of DOC, FDOM, and chemical oxygen demand (COD) in saline groundwater (Woljeong, Pyoseon, and Hwasun beaches) and coastal seawater (Haengwon, Gwideok, Pyoseon, and Yeongnak) in Jeju, Korea. The highest concentrations of DOC and COD in groundwater were found in Woljeong and Pyoseon, and those in coastal water were observed in Haengwon and Pyoseon, indicating that the higher concentrations of DOC and COD seem to be associated with saline groundwater-driven dissolved organic matter (DOM) and/or biogeochemical processes. According to origin and optical properties of DOM using FDOM as a tracer, proportion of humic-like FDOM, more refractory DOM, was relatively greater in the groundwater than in the coastal water. With regard to this result, there was no relationship between DOC and COD in groundwater, while DOC showed a good positive correlation (r2 = 0.66) with COD in coastal water. This result indicates that COD as an indicator of assessment of DOM has a limitation in which it is difficult to quantify refractory DOM. Although DOC is a potential alternative to COD in the coastal environments, particulate organic carbon cannot be negligible due to relatively higher concentration compared to the open ocean. Therefore, the use of total organic carbon (TOC) as a replacement of COD in the coastal ocean is important, and the evaluation criterion of the TOC is necessary in order to evaluate of organic matter indicator in the various coastal environments.

Henry′s constants of TCE and PCE in surfactant solutions

  • 양중석;백기태;권태순;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.315-317
    • /
    • 2004
  • Henry's law constants of trichloroethylene (TCE) and tetrachloroethylene (PCE) in air-aqueous surfactant systems were determined by gas chromatography headspace analysis of closed system. The effect of surfactant type and concentration was investigated.

  • PDF