• 제목/요약/키워드: Groundwater recharge

검색결과 370건 처리시간 0.032초

NRCS-CN방법과 기저유출 분리법을 이용한 지하수함양률 산정 (Estiamtion of Groundwater Recharge Rate Using the NRCS-CN and the Baseflow Separation Methods)

  • 배상근;김용호
    • 한국환경과학회지
    • /
    • 제15권3호
    • /
    • pp.253-260
    • /
    • 2006
  • Groundwater recharge from precipitation is affected by the infiltration from ground surface and the movement of soil water. Groundwater recharge is directly related to the groundwater amount and flow in aquifers, and baseflow to rivers. Determining groundwater recharge rate for a given watershed is a prerequisite to estimate sustainable groundwater resources. The estimation of groundwater recharge rate were carried out for three subwatersheds in the Wicheon watershed and two subwatersheds in the Pyungchang River basin and for the period 1990-2000, using the NRCS-CN method and the baseflow separation method. The recharge rate estimates were compared to each other. The result of estimation by the NRCS-CN method shows the average annual recharge rate 15.4-17.0% in the Wicheon watershed and 26.4-26.8% in the Pyungchang River basin. The average annual recharge rates calculated by the baseflow separation method ranged 15.1-21.1% in the W icheon watershed, and 25.2-33.4% in the Pyungchang River basin. The average annual recharge rates calculated by the NRCS-CN method is less variable than the baseflow separation method. However, the average annual recharge rates obtained from the two methods are not very different, except NO. 6 subwatershed in Pyungchang River basin.

분포형 물수지 모델(WetSpass-M)을 이용한 삽교천 상류 유역에서의 월별 지하수 함양량 산정 (Evaluation of Groundwater Recharge using a Distributed Water Balance Model (WetSpass-M model) for the Sapgyo-cheon Upstream Basin)

  • 안효원;하규철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권6호
    • /
    • pp.47-64
    • /
    • 2021
  • In this study, the annual and monthly groundwater recharge for the Sapgyo-cheon upstream basin in Chungnam Province was evaluated by water balance analysis utilizing WetSpass-M model. The modeling input data such as topography, climate parameters, LAI (Leaf Area Index), land use, and soil characteristics were established using ArcGIS, QGIS, and Python programs. The results showed that the annual average groundwater recharge in 2001 - 2020 was 251 mm, while the monthly groundwater recharge significantly varied over time, fluctuating between 1 and 47 mm. The variation was high in summer, and relatively low in winter. Variation in groundwater recharge was the largest in July in which precipitation was heavily concentrated, and the variation was closely associated with several factors including the total amount of precipitation, the number of days of the precipitation, and the daily average precipitation. This suggests the extent of groundwater recharge is greatly influenced not only by quantity of precipitation but also the precipitation pattern. Since climate condition has a profound effect on the monthly groundwater recharge, evaluation of monthly groundwater recharge need to be carried out by considering both seasonal and regional variability for better groundwater usage and management. In addition, the mathematical tools for groundwater recharge analysis need to be improved for more accurate prediction of groundwater recharge.

강수량 변화가 지하수함양량에 미치는 영향 (The Effect of Precipitation Change to the Groundwater Recharge)

  • 이승현;배상근
    • 한국습지학회지
    • /
    • 제13권3호
    • /
    • pp.377-384
    • /
    • 2011
  • 강수량변화가 도시 및 해안지역의 지하수함양량에 미치는 영향을 파악하기 위하여 부산광역시 수영구를 포함하는 광역 지하수유역에 강수량자료를 변화시켜 지하수함양량을 산정하고 강수량증감에 따른 지하수함양량의 변화특성을 분석하였다. 그 결과, 강수량 증감에 따라 지하수함양량의 증감량은 차이가 있으나 강수량과 지하수함양량의 변화 양상은 동일한 경향을 나타내었다. 강수량의 변화에 대한 지하수함양률의 변화폭이 최근으로 올수록 적어지는 경향을 나타내었다. 또한 연도가 증가함에 따라 지하수함양률이 감소하는 추세를 나타내었다. 강수량 변화 시의 지하수함양량의 전체 평균 변화율은 강수량이 10 % 증가 시에는 2.23 %, 10 % 감소 시에는 2.20 %, 20 % 증가 시에는 4.39 %, 20 % 감소 시에는 4.36 %로 강수의 변화율에 비하여 지하수함양량은 적은 변화율을 보였다. 이들 결과로부터 강수량의 변화율에 비하여 지하수함양률의 변화가 크지 않음을 알 수 있었다. 따라서 도시지역에서 강수량이 변화할 시에는 지하수함양량의 변화율이 이에 미치지 못함으로 직접유출에 미치는 영향이 그 양만큼 커지게 되어 도시홍수의 발생가능성이 지속적으로 증가하게 됨을 알 수 있었다.

제주도 한천유역 지하수 모델개발을 통한 인공함양 평가 (Modeling Artificial Groundwater Recharge in the Hancheon Drainage Area, Jeju island, Korea)

  • 오세형;김용철;구민호
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권6호
    • /
    • pp.34-45
    • /
    • 2011
  • For the Hancheon drainage area in Jeju island, a groundwater flow model using Visual MODFLOW was developed to simulate artificial recharge through injection wells installed in the Hancheon reservoir. The model was used to analyze changes of the groundwater level and the water budget due to the artificial recharge. The model assumed that $2{\times}10^6m^3$ of storm water would recharge annually through the injection wells during the rainy season. The transient simulation results showed that the water level rose by 39.6 m at the nearest monitoring well and by 0.26 m at the well located 7 km downstream from the injection wells demonstrating a large extent of the affected area by the artificial recharge. It also shown that, at the time when the recharge ended in the 5th year, the water level increased by 81 m at the artificial reservoir and the radius of influence was about 2.1 km downstream toward the coast. The residence time of recharged groundwater was estimated to be no less than 5 years. The model also illustrated that 15 years of artificial recharge could increase the average linear velocity of groundwater up to 1540 m/yr, which showed 100 m/yr higher than before. Increase of groundwater storage due to artificial recharge was calculated to be $2.4{\times}10^6$ and $4.3{\times}10^6m^3$ at the end of the 5th and 10th years of artificial recharge, respectively. The rate of storage increase was gradually diminished afterwards, and storage increase of $5.0{\times}10^6m^3$ was retained after 15 years of artificial recharge. Conclusively, the artificial recharge system could augment $5.0{\times}10^6m^3$ of additional groundwater resources in the Hancheon area.

Estimating groundwater recharge from time series measurements of subsurface temperature

  • Koo, Min-Ho;Kim, Yongje
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.213-216
    • /
    • 2003
  • Efforts for better understanding of the interaction between groundwater recharge and thermal regime of the subsurface medium is gaining momentum for its diverse applications in water resources. A numerical model is developed to simulate temperature variations of the subsurface under time varying groundwater recharge. The model utilizes MacCormack scheme for finite difference approximation of the partial differential equation describing the conductive and advective heat transport. For the estimation of recharge rate, optimization of the model is realized by searching for the unknown parameters which minimize the root-mean-square error between simulated and measured temperatures. Simulation results for 22-year time series data of temperature measurements reveal that the proposed model can accurately simulate subsurface temperature variations resulting from the redistribution of the heat due to the movement of water and it can also estimate temporal variations of recharge. Seasonal variations of recharge and a linear relationship between precipitation and recharge are clearly reflected in the simulated results.

  • PDF

기후 변화에 따른 제주도 표선 유역의 함양률 및 수위변화 예측 (Impact of Climate Change on the Groundwater Recharge and Groundwater Level Variations in Pyoseon Watershed of Jeju Island, Korea)

  • 신에스더;고은희;하규철;이은희;이강근
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.22-35
    • /
    • 2016
  • Global climate change could have an impact on hydrological process of a watershed and result in problems with future water supply by influencing the recharge process into the aquifer. This study aims to assess the change of groundwater recharge rate by climate change and to predict the sustainability of groundwater resource in Pyoseon watershed, Jeju Island. For the prediction, the groundwater recharge rate of the study area was estimated based on two future climate scenarios (RCP 4.5, RCP 8.5) by using the Soil Water Balance (SWB) computer code. The calculated groundwater recharge rate was used for groundwater flow simulation and the change of groundwater level according to the climate change was predicted using a numerical simulation program (FEFLOW 6.1). The average recharge rate from 2020 to 2100 was predicted to decrease by 10~12% compared to the current situation (1990~2015) while the evapotranspiration and the direct runoff rate would increase at both climate scenarios. The decrease in groundwater recharge rate due to the climate change results in the decline of groundwater level. In some monitoring wells, the predicted mean groundwater level at the year of the lowest water level was estimated to be lower by 60~70 m than the current situation. The model also predicted that temporal fluctuation of groundwater recharge, runoff and evapotranspiration would become more severe as a result of climate change, making the sustainable management of water resource more challenging in the future. Our study results demonstrate that the future availability of water resources highly depends on climate change. Thus, intensive studies on climate changes and water resources should be performed based on the sufficient data, advanced climate change scenarios, and improved modeling methodology.

도시화에 의한 장기 지하수 함양량 변화 (Long-Term Trend of Groundwater Recharge According to Urbanization)

  • 이승현;배상근
    • 한국환경과학회지
    • /
    • 제19권6호
    • /
    • pp.779-785
    • /
    • 2010
  • To solve a problem of water supply on urban areas, groundwater recharge has to be assessed not only for evaluating the possibility of groundwater development but also for identifying a sustainable aquifer system for water resource development. The assessment of groundwater recharge has been challenged since the land use has been changed constantly. In this study, the groundwater recharge and its ratio were assessed from 1961 to 2007 in Su-yeong-gu, Busan, South Korea by analyzing precipitation, land use, and soil characteristics. For land use analysis, the urbanization change was considered. The land use areas for the residential, agricultural, forest, pasture, bare soil, and water in 1975 occupy 18.6 %, 30.0%, 48.8%, 0.1%, 2.0%, and 0.5% of total area, respectively. The land use ratios were sharply changed from 1980 to 1985; the agricultural area was decreased to 18.3%, and the residential area was increased to 15.0%. From 1995 to 2000, the agricultural area was decreased to 5.5%, and the residential area was increased to 5.4%. The annual averages of precipitation, groundwater recharge, and its ratio were 1509.3 mm, 216.0 mm, and 14.3% respectively. The largest amount of the groundwater recharge showed in 1970 as 408.9 mm, comparing to 2138.1 mm of annual rainfall. Also, the greatest ratio of the groundwater recharge was 19.8% in 1984 with 1492.6 mm of annual rainfall. The lowest amount and ratio of the groundwater recharge were 71.9 mm and 8.0% in 1988, relative to 901.5 mm of annual precipitation. As a result, it is concluded that rainfall has increased, whereas groundwater recharge has decreased between 1961 and 2007.

SWAT HRU Mapping module을 이용한 해안면 만대천 유역의 토지이용별 지하수 함양량 평가 (Evaluation of groundwater recharge rate for land uses at Mandae stream watershed using SWAT HRU Mapping module)

  • 류지철;최재완;강현우;금동혁;신동석;이기환;정교철;임경재
    • 한국물환경학회지
    • /
    • 제28권5호
    • /
    • pp.743-753
    • /
    • 2012
  • The hydrologic models, capable of simulating groundwater recharge for long-term period and effects on it of crops management in the agricultural areas, have been used to compute groundwater recharge in the agricultural fields. Among these models, the Soil and Water Assessment Tool (SWAT) has been widely used because it could interpret hydrologic conditions for the long time considering effects of weather condition, land uses, and soil. However the SWAT model couldn't represent the spatial information of Hydrologic Response Unit (HRU), the SWAT HRU mapping module was developed in 2010. With this capability, it is possible to assume and analyze spatio-temporal groundwater recharge. In this study, groundwater recharge of rate for various crops in the Mandae stream watershed was estimated using SWAT HRU Mapping module, which can simulate spato-temporal recharge rate. As a result of this study, Coefficient of determination ($R^2$) and Nash-Sutcliffe model efficiency (NSE) for flow calibration were 0.80 and 0.72, respectively, and monthly groundwater recharge of Mandae watershed in Haean-myeon was 381.24 mm/year. It was 28% of total precipitation in 2009. Groundwater recharge rate was 73.54 mm/month and 73.58 mm/month for July and August 2009, which is approximately 18 times of groundwater recharge rate for December 2009. The groundwater recharges for each month through the year were varying. The groundwater recharge was smaller in the spring and winter seasons, relatively. So, it is necessary to enforce proper management of groundwater recharge during droughty season. Also, the SWAT HRU Mapping module could show the result of groundwater recharge as a GIS map and analyze spatio-temporal groundwater recharge. So, this method, proposed in this study, would be quite useful to make groundwater management plans at agriculture-dominant watershed.

Effect of the climate change on groundwater recharging in Bangga watershed, Central Sulawesi, Indonesia

  • Sutapa, I Wayan
    • Environmental Engineering Research
    • /
    • 제22권1호
    • /
    • pp.87-94
    • /
    • 2017
  • This study was conducted to determine the effect of the climate change to the level of groundwater recharging. This research was conducted on the watershed of Bangga by using the Soil Water Balance of MockWyn-UB model. Input data compose of evapotranspiration, monthly rainfall, watershed area, canopy interception, heavy rain factor and the influence of climate change factors (rainfall and temperature). The conclusion of this study indicates that there is a decreasing trend in annual groundwater recharge observed from 1995 to 2011. The amount of groundwater recharge varied linearly with monthly rainfall and between 3% to 25% of the rainfall. This result implies that rain contributed more than groundwater recharge to runoff and evaporation and the groundwater recharge and Bangga River discharge depends largely on the rainfall. In order to increase the groundwater recharge in the study area, reforestation programmes should be intensified.

Estimation of Groundwater Recharge in Sukhuma District of Laos

  • VONGPHACHANH, SINXAY
    • 물과 미래
    • /
    • 제52권8호
    • /
    • pp.28-33
    • /
    • 2019
  • This study is presented to estimate groundwater recharge in Sukhuma District of Southern Laos. The groundwater recharge is estimated by using the water table fluctuation method from observation groundwater levels at eleven domestic wells and five paired observation wells (shallow and deep). The results show that a value of specific yield for the shallow fractured sandstone aquifer in the Sukhuma District is quantified at approximately 0.03, Groundwater recharge for 2012-13 and 2015-16 is estimated at 5% (118 mm) and 4% (95 mm) of annual rainfall. respectively. The results of the current study provide useful basic information for future groundwater resource management planning in Sukhuma District. The methods applied in this study may be also useful for studying the groundwater recharge in regions with limited field data.