• Title/Summary/Keyword: Groundwater recharge

Search Result 371, Processing Time 0.021 seconds

Study on the Determination of the Maximum Injection Pressure for Groundwater Rechargement (지하수 함양시 최대 주입압력 결정을 위한 연구)

  • Choi, Jin O;Jeong, Hyeon Cheol;Chung, Choong Ki;Kim, Chang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.501-508
    • /
    • 2022
  • Required essential technique is to determine the maximum recharge pressure in the well with condition of non-ground failure for the recovery of the groundwater. Based on the classical soil mechanics, the maximum recharge pressure was estimated with the numerical anlaysis and laboratory triaxial test. In the numerical analysis, the maximum recharge pressure is defined as the ground failure stress. The ground failure of the sand was defined as the piping and the one of the caly was to the undrained failure by the confined pressure increment. In the triaxial test, the recharge pressure in the ground was modified by the back pressure in the specimen. In case of sand, the volume strain was dramatically increased at the 93 % of the maximum back pressure, same meaning of the 0 effective stress state. In case of clay, the only radial volume strain was to reached 1.5 % without failure. Therefore, The maximum recharge pressure could be determined with the numerical analysis and triaxial test.

Estimated groundwater recharge including water pipes leakage in Kumagaya City

  • Saito, Keisuke;Ogawa, Susumu;Takamura, Hiroki;Yashiro, Yusuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.735-737
    • /
    • 2003
  • The drying up of seepage in Kumagaya City was caused by the increase of impermeable area with urbanization. The project of rain fall infiltration facilities has been planned for improvement of a hydrological cycle in Kumagaya City. With GIS and remote sensing, the most suitable arrangement for the rainfall infiltration inlets was examined. Distribution maps for infiltration, evapotranspiration and groundwater recharge at each town in Kumagaya City was designed from the land cover classification map with hydrological analysis. In these distribution maps, influence of the leak from drinking water and sewage networks was counted to the hydrological cycle.

  • PDF

하수처리장 방류수를 이용한 인공함양 가능성 평가

  • 김병군;서인석;홍성택;김형수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.257-260
    • /
    • 2002
  • The main purpose of this research is to find suitable treatment methods of wastewater effluent for artificial recharge. For this purpose, we search the effluent quality of wastewater treatment plant and possibility of additional filtration process. Particles ranged 2 ~ 5 ${\mu}{\textrm}{m}$ and 15~20 ${\mu}{\textrm}{m}$ in "T" WWTP(Waste Water Treatment Plant) effluent were relatively dominant. In dual-media filtration system operation, head-loss development of column 1 was about two times faster than column 2, and head-loss development within 5 cm from surface was very important factor in operation, Conclusively, for the stable filtration and running time of 1.5~2 day, influent turbidity must keep 5 NTU or below, and filtration system must operated at 280 m/day or below. After filtration of WWTP effluent, water quality reached satisfactory level. This water has potential of agricultural reusing, flushing water in building, recharging water to river or stream at dry season and artificial recharge of ground water.und water.

  • PDF

도시화에 따른 갑천유역의 지하 수문 특성 변화 분석

  • Kim Jeong-Gon;Son Gyeong-Ho;Go Ik-Hwan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.64-67
    • /
    • 2006
  • The main purpose of this research was to investigate the effects of urbanization on the groundwater system in the Gap river basin, a sub-basin of the Geum river basin. In this analysis, we constructed a water cycle analysis system using SWAT. Then, changes in soil moisture and recharge rate due to land-use changes were investigated using different land-use data estimated in 1975 and 2000. Simulation results were analyzed for both draught (2001) and flood (2003) years to take into account different hydrologic conditions. It was shown that recharge rate in the most urbanized area (31% change) was reduced by 17% for both periods due to urbanization. The results also indicated that soil moisture decrease due to urbanization was more sensitive in the drought year (2001) than in the flood year (2003), We expect that the results of this research can contribute to providing useful information for managing urban rivers considering river restoration and flood control.

  • PDF

A Study on the Recharge Characteristics of Groundwater in Subcatchment including Spring Water Wells (샘물 취수정이 위치한 소유역의 지하수함양 특성에 관한 연구)

  • Son, Doo Gie;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.30 no.3
    • /
    • pp.303-314
    • /
    • 2020
  • Bottled water companies submit monthly hydrologic data including periodical environmental effects investigation, daily water production capacity, water production, water level, water chemistry (pH, EC, temperature) per hour and strictly manage groundwater by periodical analyses. Thus few problems concerning drawdown due to excess intake of groundwater take place. Nevertheless, bottled water companies are imprinted as a contribution to civil affairs resulted regarding groundwater near the companies. Therefore, a new method is required during water balance analysis in environmental effects evaluation, which should be compatible with the evaluation by hydrologic experts as well more accessible to non-experts. In this study, water level of surface water and recharge rate in subcatchment where water production wells are located were measured and monthly baseflow rates were separated from normal streams. Besides, recharge properties of groundwater and surface water in the same catchment area were estimated using analyses of oxygen and hydrogen isotopes in groundwater (production well), surface water, and rainfall.

A Study on the Recharge Characteristics of Groundwater in the Jeju Samdasoo Watershed Using Stable Water Isotope Data (안정동위원소를 이용한 제주삼다수 유역의 지하수 함양 특성 연구)

  • Shin, Youngsung;Kim, Taehyeong;Moon, Suhyung;Yun, Seong-Taek;Moon, Dukchul;Han, Heejoo;Kang, Kyounggu
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.3
    • /
    • pp.25-36
    • /
    • 2021
  • This study evaluated monthly, seasonal and altitudinal changes of oxygen and hydrogen isotope compositions of wet precipitation samples (n = 238) that were collected for last four years from 7 altitudes (from 265 to 1,500 m above sea level) in the Jeju Samdasoo watershed at the southeastern part of Jeju island, in order to examine the recharge characteristics of groundwater that is pumped out for the production of the Samdasoo drinking mineral water. Precipitation samples showed a clear seasonal change of O-H isotopic composition as follow, due to the different air masses and relative humidity: 𝛿D = 7.3𝛿18O + 11.3 (R2 = 0.76) in the wet season (June to September), while 𝛿D = 7.9𝛿18O + 9.5 (R2 = 0.91) in the dry season (October to May). In contrast, the stable isotope compositions of groundwater were nearly constant throughout the year and did not show a distinct monthly or seasonal change, implying the well-mixing of infiltrated water during and after its recharge. An altitudinal effect of the oxygen isotope compositions of precipitation was also remarkable with the decrease of -0.19‰ (R2 = 0.91) with the elevation increase by 100 m. Based on the observed altitudinal change, the minimum altitude of groundwater recharge was estimated as 1,200 m above the sea level in the Jeju Samdasoo watershed.

Study on the rainwater recharge model using the groundwater variation and numerical solution of quasi-three dimensional two-phase groundwater flow

  • Tsutsumi, Atsushi;Jinno, Kenji;Mori, Makito;Momii, Kazuro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05b
    • /
    • pp.1034-1040
    • /
    • 2002
  • A rainwater recharge model, which is combined with the quasi-three dimensional unconfined groundwater flow, is proposed in the present paper. The water budget in the catchments of the planned new campus of Kyushu University is evaluated by the present method that calculates both the surface runoff and groundwater flow simultaneously. The results obtained in the present study reveal that the calculated monthly and annual runoff discharges agree reasonably well with the observed discharge. Combining the rainwater recharge model, the two-phase groundwater flow equation is numerically solved f3r the entire area including the low land where the salt water intrusion is observed. The calculated depth of the salt-fresh interface agrees reasonably well with the observed ones at several cross sections. On the other hand, however, it is found that the calculated water budget remains uncertain because of lack of information on the accurate potential evapotranspiration including rainfall interception. In conclusion, however, it is found that the proposed method is applicable for the areas where the horizontal flow is dominant and the interface is assumed to be sharp.

  • PDF

Status of Exploitable Groundwater Estimations in Korea (우리나라 지하수 개발가능량 산정의 현황과 전망)

  • Chung, Il-Moon;Kim, Jitae;Lee, Jeongwoo;Chang, Sun Woo
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.403-412
    • /
    • 2015
  • We summarize the status of exploitable groundwater reserves in Korea based on reports of the National Basic Groundwater Plan, and review methods for estimating groundwater recharge rates, as recharge is a key factor in the estimation of exploitable groundwater reserves. We also outline the various methods used to assess exploitable groundwater reserves in previous groundwater investigation reports. Regarding advancements in the estimation of exploitable groundwater, we recommend that enhanced estimation methodologies (e.g., the water balance method and the advanced water table fluctuation method) and sustainable groundwater management concepts be adopted in the near future.

지하수 수위 변동을 이용한 지하수 함양률 산정(전주-완주, 곡성 지역)

  • 조민조;하규철;이명재;이진용;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.217-220
    • /
    • 2002
  • To investigate the conditions of groundwater resources In Jeonju, Wanju, and Goksung, a basic groundwater survey was performed. From the survey, various useful informations such as groundwater use, waterlevel distribution, water chemistry were obtained. This study focused on the analysis of the water levels, which were automatically monitored with pressure transducers or manually measured. The monitorings were conducted for both shallow wells completed in alluvial aquifers and deep wells in bedrock aquifers. The automatically monitored waterlevels for alluvial aquifer were also used for estimation of recharge in the study area. This study presents results of the investigation.

  • PDF

Artificial Groundwater Recharge by Underground Piping Method (지하관리에 의한 지하수함양 연구)

  • 안상진;이종형
    • Water for future
    • /
    • v.23 no.2
    • /
    • pp.239-250
    • /
    • 1990
  • The method for artificial grondwater recharge can be categorized into two groups, one is well method and the other one is scattering method. Underground piping method belongs to the latter group and it is to infiltrate water from porous pipes buried underground. This paper shows the result of indoor experiment and numerical analysis concerning this method. The purpose of the study is to maky the infiltration aspects and groundwater recharge in underground piping method. We have found that the recharge height is effect by the difference of water level and a distance of pipe laying.

  • PDF