• Title/Summary/Keyword: Groundwater pumping

Search Result 324, Processing Time 0.023 seconds

Estimation of the Change in Ground Water Level using Regression Analysis (회귀분석을 이용한 지하수 수위 변화 추정)

  • Kim, Sang-Min;Ahn, Byeong-Il
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.51-58
    • /
    • 2011
  • The objective of this study is to identify whether or not the ground water level is decreasing. We suggest a method of estimating the change in groundwater level using newly developed groundwater pumping station data. The Goseong area located in Gyeongnam province was selected considering three factors. First, this area demands relatively large amount of irrigation water because most of the land is used as a paddy field and the proportion of the paddy field within total arable land is increasing. Second, groundwater level data in nearby area are available since these are monitored by Water Management Information System (WAMIS). Third, many groundwater pumping stations have been developed in this area in order to overcome droughts thus detail information for pumping stations are available. Regression results indicate groundwater level has been decreased for over 20 years. This decreasing trend is due to the shortage of surface irrigation water which was caused by the decrease in rainfall.

Hydrogeological Characteristics of the Wangjeon-ri PCWC area, Nonsan-city, with an Emphasis on Water Level Variations (논산시 왕전리 수막재배지역의 지하수위 변화)

  • Cho, Byong-Wook;Yun, Uk;Lee, Byeong-Dae;Ko, Kyung-Seok
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.195-205
    • /
    • 2012
  • We evaluated the results of pumping tests, the amount of groundwater used by Protected Cultivation with Water Curtain (PCWC), and monthly depth to water table (DTW) at the Wangjeon-ri area, Nonsan City, to elucidate the cause of a decrease in pumping rate during the winter PCWC season. The transmissivity and storage coefficient at eight sites where the major aquifer is alluvium, vary from 119.9 to $388.1m^2/d$ and $1.5{\times}10^{-4}$ to $5.5{\times}10^{-4}$, respectively. The pumping rate for PCWC during three months (Dec. to Feb.) averaged about $8,100m^3/d$ and the maximum water level in the area varied by about 10 m. Groundwater levels had fully recovered by August-five months after pumping for PCWC had ceased. These observations indicate that the pumping rate during the winter PCWC season was excessive compared with groundwater productivity in the area. Groundwater level in the central PCWC area varied from -3.0 to 4.38 m, exceeding the water level of the Nosung Stream for only three months (Aug. to Oct.). This result indicates that Nosung Stream recharges the area during the period from November to July. To solve the problem of reduced pumping rate during the winter PCWC season, it would be necessary to reduce the amount of groundwater used for PCWC or to develop an artificial recharge system using recycled groundwater.

Analytical Solution for Flow Field by Arbitrarily-Located Multi Injection-Pumping Wells

  • Yoo, In-Wook;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.79-82
    • /
    • 2001
  • Analytical solutions have been derived to delineate the capture zone created by pumping wells for the remediation design of contaminated groundwater. These previous analytical solutions are often restricted to pumping wells only, specific well locations, a limited number of wells, and an isotropic aquifer. Analytical solution was developed to deal with arbitrarily located multi injection-pumping wells in an anisotropic homogeneous aquifer. The solution presented in this study provides a simple, easy method for determining tile complex flow field caused by multi injection-pumping wells at different rates, and will consequently be useful in pump-and-treat design.

  • PDF

A Cost-Benefit Analysis of Groundwater: Pumping Wells in Korea (지하수의 경제성 평가 연구: 지하수 관정을 중심으로)

  • Kim, Sun Geun
    • Economic and Environmental Geology
    • /
    • v.47 no.3
    • /
    • pp.219-225
    • /
    • 2014
  • In Korea, there are 1,474 thousand pumping wells nationwide which account for about 12% of total water use in 2012. As much as 39 hundred million tons of groundwater were used while 333 hundred million tons of total water were supplied in 2012. Because the water management authority projects that water demand will exceed supply by 2021, the authority is planning to extensively expand groundwater use in accordance with economic feasibility. Using the basic frameworks of cost-benefit analyses of the World Bank and the US Environmental Protection Agency (US EPA), the objective of this study is to examine the costs and benefits of the expansion of Korea's groundwater extraction through pumping wells. We conclude that the BC ratio of the groundwater pumping wells is 2.98. This signifies that the benefits are 2.98 times higher than the costs. The benefits include use and non-use values of pumping wells while the costs include the installation and maintenance of new wells, in addition to the restoration and pollution costs of abandoned wells, as well as fees for water quality tests, etc.

A Cost-Benefit Analysis of Groundwater Supply through Pumping Well Technology

  • Kim, Sun G.
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2015.11a
    • /
    • pp.479-487
    • /
    • 2015
  • In Korea, there are 1,474 thousand pumping wells nationwide which account for about 12% of total water use in 2012. As much as 39 hundred million tons of groundwater were used while 333 hundred million tons of total water were supplied in 2012. Because the water management authority projects that water demand will exceed supply by 2021, the authority is planning to extensively expand groundwater use in accordance with economic feasibility. Using the basic frameworks of cost-benefit analyses of the World Bank and the US Environmental Protection Agency (US EPA), the objective of this study is to examine the costs and benefits of the expansion of Korea's groundwater extraction through pumping wells. We conclude that the BC ratio of the groundwater pumping wells is 2.98. This signifies that the benefits are 2.98 times higher than the costs. The benefits include use and non-use values of pumping wells while the costs include the installation and maintenance of new wells, in addition to the restoration and pollution costs of abandoned wells, as well as fees for water quality tests, etc.

  • PDF

지하수위를 고려한 양수량 추정

  • 박승기;이승기;정재훈;강성민
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.13-16
    • /
    • 2002
  • The analysis of characteristics of pumping in the small tube well for agriculture were surveyed. Study area was located at the Galsinri in Yesangun near the yedang reservoir. Agricultural electricity using rates for pumping, ground water level and volume of pumping was monitored every week. Pump working ratio and pump efficiency during period of transplanting of rice showed 48.9%, 62.7% respectively.

  • PDF

Geochemical Characteristics of Groundwater during the Constant and Step-drawdown Pumping Tests at the River Bank Filtration Site (장기 및 단계 양수시험 시 강변여과 지하수의 수질변화 특성)

  • Kim, Gyoobum;Shin, Seonho;Kim, Byungwoo;Park, Joonhyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.11-21
    • /
    • 2013
  • In-situ test to find the change of $Fe^{2+}$ and $Mn^{2+}$ concentrations and ion contents in groundwater was conducted during two pumping tests at the riverbank filtration site, where is the riverine area of the Nakdong River in Changnyeong-Gun. Groundwater was sampled at one pumping well and 10 monitoring wells during a 5 steps drawdown pumping test with the rates from $500m^3/day$ to $900m^3/day$ and a constant pumping test with $800m^3/day$. The change in ion concentration of groundwater was more remarkable during a step drawdown pumping test than a constant pumping test. Especially, the decrease in $Fe^{2+}$ and $Mn^{2+}$ concentrations was distinct in a step drawdown pumping test and it happens predominantly along the direction that the radius of pumping influence was small due to a good aquifer connectivity to a pumping position. The precipitation and the oxidation of iron and manganese were caused by an air inflow and a disturbance in groundwater flow due to an abrupt change in pumping rate. The pumping rate and spatial distribution of an aquifer around a pumping well need to be considered as an important factor for the development of in-situ iron and manganese treatment technology.

Comparative Analysis of Shallow and Deep Groundwater Pumping Effects on Stream Depletion (천부와 심부지하수 양수에 따른 하천수 감소 영향의 비교분석)

  • Lee, Jeongwoo;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.383-391
    • /
    • 2020
  • In this study, Hunt's analytical solution and Ward & Lough's analytical solution for two-layered leaky aquifer system were used to estimate stream depletions due to shallow and deep groundwater pumping, and their differences were compared. Depending on the combination of the separation distance between the stream and the well, the transmissivity and the storage coefficient of the aquifer, and the leakage coefficient between the upper and lower layers, the stream depletion, which is the amount of stream water reduction compared to the amount of groundwater pumping, for each of 45,000 cases was calculated for both shallow and deep groundwater pumping, and the differences were analyzed quantitatively. When the leakage coefficient was very small, with a value of 10-61/d, the difference in the average five-year stream depletion due to the pumping of shallow and deep groundwater showed a large deviation of up to 0.9 depending on the given hydraulic characteristics; this value exponentially decreased as the stream depletion factor (SDF) increased. This exponential relationship gradually weakened as the leakage coefficient increased due to interaction effects between layers, resulting in a small difference of up to 0.2 when the leakage coefficient reached 10-31/d. Under the condition of greater interlayer hydraulic connectivity, there was little influence of the depth of groundwater pumping on the stream water reduction.

Efficiency Assessment of Wastewater Treatment Plant and Groundwater Level by Pump and Treat Technology Applied for Petroleum Contaminated Site (유류오염 지하수 정화를 위한 양수처리법 적용시 지하수위 변화 및 수처리장치의 효율평가)

  • Cho, Chang-Hwan;Kim, Joon-Ho;Park, Min-Kyu;Kim, Tae-Hyung;Choi, Yoen-Soo;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.33-38
    • /
    • 2014
  • This study was performed to evaluate the applicability of pump and treat technology as well as to identify the changes of groundwater level by continuous pumping at the petroleum contaminated site. A total of 9 monitoring wells were installed at the site and the contaminant concentrations, TPH, benzene, toluene, ethylbenzene and xylene, of groundwater were measured. With the results of the groundwater monitoring, a total of 9 wells were set up for pumping contaminated groundwater in 3 locations. The waste water treatment facility with a capacity of $10m^3/hr$ was installed in the site and operated for about 1 year. The concentrations of the contaminated groundwater from the 3 pumping wells were exceeded groundwater regulation for benzene and TPH. However, the effluent concentration of benzene and TPH was under the regulation showing the maximum level of 0.011 mg/L and 1.2 mg/L during the operation periods. Groundwater levels were decreased by continuous pumping and those were not recovered during the operation period. Groundwater levels of PW-1,2, PW-3,4,5,6 and PW-7,8,9 were decreased about 5 m, 0.7 m, 2 m, respectively. The hydraulic conductivity (K) of the region of PW-1,2, PW-3,4,5,6 and PW-7,8,9 was estimated to be $6.143{\times}10^{-5}cm/sec$, $2.675{\times}10^{-5}cm/sec$, $1.198{\times}10^{-4}cm/sec$. Groundwater level was seemed to be affected not by hydraulic conductivity but by morphological effect. These results show that the pump and treat technology has high applicability for the restoration of petroleum contaminated groundwater but needs continuous monitoring to prevent rapid groundwater drawdown.

Prediction of Groundwater Level in Chojung Area (초정지역의 지하수 유동해석)

  • 안상도;김경호;정영훈
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.133-140
    • /
    • 2000
  • The area of Chojung is famous for its mineral water quality. Because of this reason, massive groundwater development was induced in the area. As a result of excessive pumping. the depletion of the groundwater resources is expected seriously. This study was conducted to analyse groundwater flow in Chojung using a numerical model. Simulation results show the groundwater level change slowly in the mountain area but steep groundwater drawdown occurred in the pumping area in the downstream. This steep groundwater drawdown is due to excessive pumping in the hilly region. Because of this excessive, desiccation of water resources were predicted and proper countermeasure is in great demand.

  • PDF