• 제목/요약/키워드: Groundwater pumping

검색결과 321건 처리시간 0.024초

전남 무안 해안 대수층에서의 지하수위 예측을 위한 자기교차회귀모형 구축 (Development of the Autoregressive and Cross-Regressive Model for Groundwater Level Prediction at Muan Coastal Aquifer in Korea)

  • 김현정;여인욱
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권4호
    • /
    • pp.23-30
    • /
    • 2014
  • Coastal aquifer in Muan, Jeonnam, has experienced heavy seawater intrusion caused by the extraction of a substantial amount of groundwater for the agricultural purpose throughout the year. It was observed that groundwater level dropped below sea level due to heavy pumping during a dry season, which could accelerate seawater intrusion. Therefore, water level needs to be monitored and managed to prevent further seawater intrusion. The purpose of this study is to develop the autoregressive-cross-regressive (ARCR) models that can predict the present or future groundwater level using its own previous values and pumping events. The ARCR model with pumping and water level data of the proceeding five hours (i.e., the model order of five) predicted groundwater level better than that of the model orders of ten and twenty. This was contrary to expectation that higher orders do increase the coefficient of determination ($R^2$) as a measure of the model's goodness. It was found that the ARCR model with order five was found to make a good prediction of next 48 hour groundwater levels after the start of pumping with $R^2$ higher than 0.9.

해수 침투에 대한 층상 불균질성 및 지하수 양수 방식의 영향 삼차원 수치 모의 (Three-Dimensional Numerical Simulation of Impacts of Layered Heterogeneity and Groundwater Pumping Schemes on Seawater Intrusion)

  • 박화석;김중휘;염병우;김준모
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제13권4호
    • /
    • pp.8-21
    • /
    • 2008
  • 지질 매체의 층상 불균질성과 지하수 양수 방식이 해안 대수층 내에서의 지하수 유동과 염분 이동에 미치는 영향을 정량적으로 분석하기 위하여 수리동역학적 분산 수치 모델을 이용한 일련의 삼차원 수치 모델링이 수행되었다. 해수 침투에 대한 층상 불균질성의 영향을 평가하기 위하여 하부 사토층(대수층)과 상부 점토층(준대수층)으로 구성된 층상 불균질 해안 대수층과 이에 상응하는 등가의 물질로 구성된 균질 해안 대수층을 수치 모델링하였다. 또한 해수 침투에 대한 지하수 양수 방식의 영향을 평가하기 위하여 전체 수치 모델링 기간 동안에 동일한 양의 지하수를 양수하는 연속적인 지하수 양수 방식과 두 개의 주기적인 지하수 양수 방식을 상기한 두 해안 대수층에 적용하였다. 수치 모델링 결과는 주기적인 지하수 양수 방식이 층상 대수층의 하부 사토층뿐만 아니라 상부 점토층에서의 지하수 유동과 염분 이동에 보다 중대한 악영향을 끼치며, 주기적인 지하수 양수 시에 양수 강도가 클수록 지하수 염수화가 공간적 및 시간적으로 더욱 심화됨을 보여준다. 이는 해수 침투에 의한 지하수 염수화를 최소화하기 위해서는 지속적인 지하수 양수 방식이 보다 더 적합할 수 있음을 의미한다. 또한 수치 모델링 결과는 주기적인 지하수 양수시에 상부 점토층에서의 지하수 염수화 양상이 하부 사토층에서의 그것에 비해 매우 다르게 발생함을 보여준다. 이러한 두 지층 사이의 지하수 염수화 양상의 차이는 층상 해안 대수층의 층상 불균질성에 기인하는 것으로 해석된다.

해석적 모형을 이용한 주기적 지하수 양수가 하천의 수량에 미치는 장기 영향 분석 (Evaluation of long-term stream depletion due to cyclic groundwater pumping using analytical model)

  • 이정우;정일문;김남원
    • 한국수자원학회논문집
    • /
    • 제52권7호
    • /
    • pp.483-492
    • /
    • 2019
  • 대수층과 하상의 수리특성을 고려하여 유도된 Hunt 해석해에 영상정과 중첩원리를 적용하여 양수 및 중단을 반복하는 주기적 지하수 양수로 인한 하천수 감소량을 산정할 수 있는 해석적 모형을 개발하고, 이를 활용하여 관개기 지하수 양수에 따른 하천수량에 미치는 장기 영향을 분석하였다. 대수층과 하상의 다양한 수리특성값과 하천-관정 이격거리 조합에 따라 총 1,500 가지 조건에 대해 10년 양수시 하천수 감소량을 산정하고 그 결과를 도시적으로 나타내었으며, 특히 양수기간동안 최대 및 평균 하천수 감소율의 거동 특성을 연속적인 양수의 결과와 비교, 분석하였다. 또한, 하천수 감소율과 농업용수 회귀율을 함께 고려하여 하천수량 측면에서 관개기 지하수 양수 영향을 최소화할 수 있는 한계수리조건을 제시하였다.

지하수 히트펌프 시스템의 대수층 활용 사레 연구 (Study on the aquifer utilization for a ground water heat pump system)

  • 심병완;이철우
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.32-35
    • /
    • 2006
  • The validation of a groundwater source heat pump system installation site is estimated by bydrogeothermic model ing. The hydraulic characteristics of the aquifer system is evaluated from pumping and recovery tests. In addition, the temperature distribution by the pumping and the injection of groundwater, and water level fluctuations are simulated by numerical modeling. The total cooling and heating load for the building is designed as 120RT(refrigeration ton) and the ground water source heat pump system covers 50RT as a subsidiary system The scenario of heat pump operation is organized as pumping and inject ion of groundwater that is performed for 8 hours per day in cooling mode for 90 days during the summer season The heat transfer by the injected warm water is limited near the inject ion wells in the simulated temperature distribution. The reason is that the given operation time is too short to expect broad thermal diffusion in large volume of the aquifer in the simulation time The simulated groundwater level and temperature distribution can be used as important data to develope an energy effective pumping and injection well system. Also it will be very useful to evaluate the hydraulic capacity of a target groundwater reservoir.

  • PDF

Estimating Groundwater Level Change Associated with River Stage and Pumping using Time Series Analyses at a Riverbank Filtration Site in Korea

  • Cheong, Jae-Yeol;Hamm, Se-Yeong;Kim, Hyoung-Soo;Lee, Soo-Hyoung;Park, Heung-Jai
    • 한국환경과학회지
    • /
    • 제26권10호
    • /
    • pp.1135-1146
    • /
    • 2017
  • At riverbank filtration sites, groundwater levels of alluvial aquifers near rivers are sensitive to variation in river discharge and pumping quantities. In this study, the groundwater level fluctuation, pumping quantity, and streamflow rate at the site of a riverbank filtration plant, which produces drinking water, in the lower Nakdong River basin, South Korea were interrelated. The relationship between drawdown ratio and river discharge was very strong with a correlation coefficient of 0.96, showing a greater drawdown ratio in the wet season than in the dry season. Autocorrelation and cross-correlation were carried out to characterize groundwater level fluctuation. Autoregressive model analysis of groundwater water level fluctuation led to efficient estimation and prediction of pumping for riverbank filtration in relation to river discharge rates, using simple inputs of river discharge and pumping data, without the need for numerical models that require data regarding several aquifer properties and hydrologic parameters.

계절양수가 하천건천화에 미치는 영향 (Impacts of Seasonal Pumping on Stream Depletion)

  • 이현주;구민호;임진실;유병호;김용철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권1호
    • /
    • pp.61-71
    • /
    • 2016
  • Visual MODFLOW was used for quantifying stream-aquifer interactions caused by seasonal groundwater pumping. A hypothetical conceptual model was assumed to represent a stream-aquifer system commonly found in Korea. The model considered a two-layered aquifer with the upper alluvium and the lower bedrock and a stream showing seasonal water level fluctuations. Our results show that seasonal variation of the stream depletion rate (SDR) as well as the groundwater depletion depends on the stream depletion factor (SDF), which is determined by aquifer parameters and the distance from the pumping well to the stream. For pumping wells with large SDF, groundwater was considerably depleted for a long time of years and the streamflow decreased throughout the whole year. The impacts of return flow were also examined by recalculating SDR with an assumed ratio of immediate irrigation return flow to the stream. Return flow over 50% of pumping rate could increase the streamflow during the period of seasonal pumping. The model also showed that SDR was affected by both the conductance between the aquifer and the stream bed and screen depths of the pumping well. Our results can be used for preliminary assessment of water budget analysis aimed to plan an integrated management of water resources in riparian areas threatened by heavy pumping.

온양온천지구에서의 온천수 수량평가 (Quantity Evaluation of Hot Spring at Onyang Spa Area)

  • 이철우
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.438-441
    • /
    • 2006
  • The groundwater level was originally above the surface at the Onyang spa area. However, it is now 98-138m depth below the surface deu to the artificial pumping from boreholes. The fluctuations of the piezometric head were observed in 4 boreholes. Transmissivity estimated from the pumping rate and the drawdown is about $577.51 m^2/day$ The transmissivity of Onyang spa area is much larger than common values of fractured aqui for the drawdown of the piezometric head by artificial pumping is widely spreaded out in that area. The drawdown related to each pumping rate was analyzed and the formula between drawdown and pumping rate was made by a regression analysis. The formula can be applied for the condition of enough groundwater flowing into the Onyang spa area

  • PDF

Effect of groundwater level change on piled raft foundation in Ho Chi Minh City, Viet Nam using 3D-FEM

  • Kamol Amornfa;Ha T. Quang;Tran V. Tuan
    • Geomechanics and Engineering
    • /
    • 제32권4호
    • /
    • pp.387-396
    • /
    • 2023
  • Ground subsidence, which is a current concern that affects piled raft foundations, has occurred at a high rate in Ho Chi Minh City, Viet Nam, due primarily to groundwater pumping for water supply. In this study, the groundwater level (GWL) change affect on a piled raft foundation was investigated based on the three-dimensional finite element method (3D-FEM) using the PLAXIS 3D software. The GWL change due to global groundwater pumping and dewatering were simulated in PLAXIS 3D based on the GWL reduction and consolidation. Settlement and the pile axial force of the piled raft foundation in Ho Chi Minh subsoil were investigated based on the actual design and the proposed optimal case. The actual design used the piled foundation concept, while the optimal case applied a pile spacing of 6D using a piled raft concept to reduce the number of piles, with little increased settlement. The results indicated that the settlement increased with the GWL reduction, caused by groundwater pumping and dewatering. The subsidence started to affect the piled raft foundation 2.5 years after construction for the actual design and after 3.4 years for the optimal case due to global groundwater pumping. The pile's axial force, which was affected by negative skin friction, increased during that time.

지표수 지하수 연계운영에 의한 갈수기 지표수-수자원관리 (Conjunctive Management Considering Stream-Aquifer Systems for Drought Season)

  • 차기욱;김우구;신용노
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.389-394
    • /
    • 2008
  • The purpose of this research was to develop a methodology to determine whether conjunctive surface water and groundwater management could significantly reduce deficits in a river basin with a relatively limited alluvial aquifer. The Geum River basin is one of major river basins in South Korea. The upper region of the Geum River basin is typical of many river basins in Korea where the shape of river basin is narrow with small alluvial aquifer depths from 10m to 20m and where most of the groundwater pumped comes quickly from the steamflow. The basin has two surface reservoirs, Daecheong and Yongdam. The most recent reservoir, Yongdam, provides water to a trans-basin diversion, and therefore reduces the water resources available in the Geum River basin. After the completion of Yongdam reservoir, the reduced water supply in the Geum basin resulted in increasing conflicts between downstream water needs and required instream flows, particularly during the low flow season. Historically, the operation of groundwater pumping has had limited control and is administered separately from surface water diversions. Given the limited size of the alluvial aquifer, it is apparent that groundwater pumping is essentially taking its water from the stream. Therefore, the operation of the surface water withdrawals and groundwater pumping must be considered together. The major component of the conjunction water management in this study is a goal-programmin g based optimization model that simultaneously considers surface water withdrawals, groundwater pumping and instream flow requirements. A 10-day time step is used in the model. The interactions between groundwater pumping and the stream are handled through the use of response and lag coefficients. The impacts of pumping on streamflow are considered for multiple time periods. The model is formulated as a linear goal-programming problem that is solved with the commercial LINGO optimization software package.

  • PDF

영향반경을 이용한 양수처리법 설계에 대한 연구 (A Study on Pump and Treat Design through Evaluation of Radius of Influence)

  • 김정우;이강근
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권3호
    • /
    • pp.1-14
    • /
    • 2014
  • It is necessary to decide the pumping rate and pumping well location together with the capture zone in order to determine an appropriate groundwater remediation strategy to manage the contaminated groundwater. The relationship between the capture zone and the drawdown radius of influence ($ROI_s$) was considered. $ROI_{cs}$ is defined as the distance where the criteria of drawdown is cs meter from pumping well in this paper. A method to decide the required pumping rate for the remediation of contaminated groundwater in order to create appropriate $ROI_{cs}$ is suggested by using the Theis equation (1935) and Cooper-Jacob equation (1946). It was shown in this study that $ROI_{cs}$ is in proportion to the pumping rate and the criteria of drawdown, which decides $ROI_{cs}$, is inversely proportional to Ti value (transmissivity ${\times}$ hydraulic gradient). The pumping rate which creates the required $ROI_{cs}$ could be planned through the relationship between the $ROI_{cs}$ and pumping rates ($ROI_{cs}$-Q curve) of the field sites 1, 2 and 3. If the drawdown is investigated along with Ti value and pumping rate at a specific site where pump and treat remediation is planned, it is expected that the required criteria of drawdown can be evaluated by using the relationship between the cs and Ti (cs-Ti curve).