DOI QR코드

DOI QR Code

Evaluation of long-term stream depletion due to cyclic groundwater pumping using analytical model

해석적 모형을 이용한 주기적 지하수 양수가 하천의 수량에 미치는 장기 영향 분석

  • Lee, Jeongwoo (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Chung, Il-Moon (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Nam Won (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology)
  • 이정우 (한국건설기술연구원 국토보전연구본부) ;
  • 정일문 (한국건설기술연구원 국토보전연구본부) ;
  • 김남원 (한국건설기술연구원 국토보전연구본부)
  • Received : 2019.05.13
  • Accepted : 2019.06.24
  • Published : 2019.07.31

Abstract

An analytical model was developed to estimate the stream depletion due to cyclic groundwater pumping by extending the Hunt's analytical solution which was derived from considering the hydraulic characteristics of the aquifer and the streambed. The model was applied to analyze the long-term effects of groundwater pumping on stream depletion during irrigation season. For the case of a total of 1,500 conditions according to various aquifer and streambed hydraulic characteristics and stream-well distance, the stream depletion due to cyclic groundwater pumping for 10 years was calculated and the results were graphically represented. Especially, the maximum and average stream depletion rates were calculated and compared with the results for continuous groundwater pumping. Furthermore, considering both stream depletion and return flow rates, the limit hydraulic condition that minimizes the influence of groundwater pumping for irrigation water supply on stream depletion was suggested.

대수층과 하상의 수리특성을 고려하여 유도된 Hunt 해석해에 영상정과 중첩원리를 적용하여 양수 및 중단을 반복하는 주기적 지하수 양수로 인한 하천수 감소량을 산정할 수 있는 해석적 모형을 개발하고, 이를 활용하여 관개기 지하수 양수에 따른 하천수량에 미치는 장기 영향을 분석하였다. 대수층과 하상의 다양한 수리특성값과 하천-관정 이격거리 조합에 따라 총 1,500 가지 조건에 대해 10년 양수시 하천수 감소량을 산정하고 그 결과를 도시적으로 나타내었으며, 특히 양수기간동안 최대 및 평균 하천수 감소율의 거동 특성을 연속적인 양수의 결과와 비교, 분석하였다. 또한, 하천수 감소율과 농업용수 회귀율을 함께 고려하여 하천수량 측면에서 관개기 지하수 양수 영향을 최소화할 수 있는 한계수리조건을 제시하였다.

Keywords

SJOHCI_2019_v52n7_483_f0001.png 이미지

Fig. 1. Definition sketch for Hunt (1999) solution (Modified from Lee et al., 2016)

SJOHCI_2019_v52n7_483_f0002.png 이미지

Fig. 2. Conceptual diagram of stream depletion during and after pumping

SJOHCI_2019_v52n7_483_f0003.png 이미지

Fig. 3. Dimensionless stream depletion for l=100 m, T=100 m2/d, S=0.15, λ=10 m/d

SJOHCI_2019_v52n7_483_f0004.png 이미지

Fig. 4. Dimensionless stream depletion for l=100 m, T=20 m2/d,S=0.1, λ=1 m/d

SJOHCI_2019_v52n7_483_f0005.png 이미지

Fig. 5. Dimensionless stream depletion for l=300 m, T=10 m2/d,S=0.05, λ=0.1 m/d

SJOHCI_2019_v52n7_483_f0006.png 이미지

Fig. 6. Dimensionless maximum stream depletion according to SDF values (λ=0.1 m/d)

SJOHCI_2019_v52n7_483_f0007.png 이미지

Fig. 7. Dimensionless maximum stream depletion according to SDF values (λ=1.0 m/d)

SJOHCI_2019_v52n7_483_f0009.png 이미지

Fig. 8. Dimensionless maximum stream depletion according to SDF values (λ= 10.0 m/d)

SJOHCI_2019_v52n7_483_f0010.png 이미지

Fig. 9. Relative ratio of stream depletion due to cyclic and continuous pumping

SJOHCI_2019_v52n7_483_f0011.png 이미지

Fig. 10. Definition of threshold day

SJOHCI_2019_v52n7_483_f0012.png 이미지

Fig. 11. Threshold days according to SDF values

SJOHCI_2019_v52n7_483_f0013.png 이미지

Fig. 12. Time varying threshold SDF

SJOHCI_2019_v52n7_483_f0014.png 이미지

Fig. 13. Threshold distance according to hydraulic diffusivity

References

  1. Darama, Y. (1991). Interactions between stream-wetland and equifer system in the presence of a pumping well. Ph. D diss., Michigan State University, East Lansing, Michigan.
  2. Darama, Y. (2001). "An analytical solution for stream depletion by cyclic pumping of wells near streams with semipervious beds." Ground Water, Vol. 39, No. 1, pp. 79-86. https://doi.org/10.1111/j.1745-6584.2001.tb00353.x
  3. Glover, R. E., and Balmer, G. G. (1954). "River depletion from pumping a well near a river." American Geophysical Union Transactions, Vol. 35, No. 3, pp. 468-470. https://doi.org/10.1029/TR035i003p00468
  4. Hantush, M. S. (1965). "Wells near streams with semipervious beds." Journal of Geophysical Research, Vol. 70, No. 12, pp. 2829-2838. https://doi.org/10.1029/JZ070i012p02829
  5. Hunt, B. (1999). "Unsteady stream depletion from ground water pumping." Ground Water, Vol. 37, No. 1, pp. 98-102. https://doi.org/10.1111/j.1745-6584.1999.tb00962.x
  6. Jenkins, C. T. (1968). Computation of rate and volume of stream depletion by wells. Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 4, Chapter D1.
  7. Lee, J., Chung, I. M., Kim, N. W., and Lee, M. H. (2016). "Evaluation of effects of groundwater pumping near stream using analytical model." Journal of the Korea Society of Civil Engineering, Vol. 36, No. 4B, pp. 617-625. https://doi.org/10.12652/Ksce.2016.36.4.0617
  8. Ministry of Land, Transport and Maritime Affairs (MLTMA) (2011). The 4th Long-term Comprehensive Plan for Water Resources (2011-2020).
  9. Theis, C. V. (1941). "The effect of a well on the flow of a nearby stream." Transactions of the American Geophysical Union, Vol. 22, No. 3, pp. 734-738. https://doi.org/10.1029/TR022i003p00734
  10. Wallace, R. B, Darama, Y., and Annable, M. D. (1990). "Stream depletion by cyclic pumping of wells." Water Resources Research, Vol. 26, No. 6, pp. 1263-1270. https://doi.org/10.1029/WR026i006p01263