• Title/Summary/Keyword: Groundwater pollution

Search Result 355, Processing Time 0.023 seconds

비위생 매립장의 침출수 유동경로 탐지를 위한 물리탐사의 적용성

  • 박삼규;김을영;최보규;이병호;박용기
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.180-183
    • /
    • 2003
  • Recently, the pollution of soil and groundwater becomes a serious social problem, and geophysical exploration methods have been introduced as a remedial investigation method of subsurface. Digital technologies such as personal computer have revolutionized our ability to acquire large volumes of data in a short term, and to produce more reliable results for subsurface image. Also, color graphics easily visualizes the survey results in a more understandable manner, and it is widely used for not only characterizing the contaminated subsurface but also monitoring contaminant and remedial process. In this paper, electrical resistivity survey were carried out In order to understand characteristics of waste landfills, and the applicability of geophysical prospecting to site assessment of waste landfill was also tested. According to the result, electrical resistivity survey were effective in estimating distribution of the leachate plume.

  • PDF

파쇄 폐타이어를 이용한 반응벽체에 관한 연구: 폐타이어 내의 MTBE(Methyl tertiary Butyl Ether) 흡착 중심

  • 박상현;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.176-179
    • /
    • 2003
  • Fuel oxygenates, such as Methyl tertiary Butyl Ether (MTBE) is additive in gasoline used to reduce air pollution. Gasoline components and fuel additives can leak form underground storage tanks. MTBE is far more water soluble than gasoline hydrocarbons like BTEX then it travels at essentially the same velocity as groundwater. MTBE in drinking water causes taste and odor problems. Therefore, the purpose of the this study is to examine the ability of ground rubber to sorb MTBE form water. The study consisted of running both batch and column tests to determine the sorption capacity and the flow through utilization efficiency of ground rubber. The result of Column test indicate that ground tire rubber has on the 36% utilization rate. Finally, it is clear that ground rubber present an attractive and relatively inexpensive sorption medium for a MTBE. The Author thought that to determine the economic costs of ground rubber utilization, the cost to sorb a given mass of contaminant by ground rubber will have to be compared to currently accepted sorption media.

  • PDF

Water Quality of Agricultural Groundwater in Western Coast Area and Eastern Mountain Area of Jeollabuk-do (전라북도 서부 해안지역과 동부 산악지역 농업용 지하수 수질 평가)

  • Jo, Jae-Yeong
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.3
    • /
    • pp.218-224
    • /
    • 2011
  • This study was conducted to estimate the water quality of agricultural groundwater well located in Buan-gun, Jinan-gun, Sunchang-gun, and Jangsu-gun of Jeollabuk-do. The groundwater samples were collected at 328 sites (Buan-gun: 158, Jansu-gun: 45, Sunchang-gun: 32, Jinan-gun: 93, respectively). We measured 4 kinds of general contaminants (pH, $NO_3-N$, $Cl^-$, and COD) and 10 kinds of specific contaminants (Cd, As, $CN^-$, Hg, phenol, Pb, $Cr^{+6}$, organophosphorus, trichloroethylene, and tetrachloroethylene). Generally, the level of general contaminants and specific contaminants in the agricultural groundwater was suitable for water quality standard in all sites for agricultural irrigation water. Exceptionally, chloride concentrations were exceeded water quality standard of agricultural groundwater at some sites in western coast area of Jeollabuk-do. Although water quality standards in agricultural groundwater have been suitable, the water contaminants of agricultural groundwater in western coast area were gradually increased than eastern mountain area.

수질 장기관측자료를 활용한 우리나라의 지하수 수질변동 특성

  • 김규범;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.94-96
    • /
    • 2003
  • Since 1995, MOCT(Ministry of Construction and Transportation) and KOWACO(Korea Water Resources Corporation) have established the National Groundwater Monitoring Network in South Korea and also MOE(Ministry of Environment) has operated Groundwater Quality Monitoring network. Until 2001, 202 monitoring stations by MOCT and 780 monitoring wells by MOE have been constructed, measured groundwater level and analyzed water samples. Groundwater quality analysis has been conducted two times a year during last 6 years for all monitoring wells. The quality data has about 15 components including pH, COD, Count of Coliform group, and etc.. Trend analysis has been peformed for 6 components(Coliform, pH, COD, NO$_3$-N, Cl and EC) of water quality which are analyzed more than 7 times for total monitoring wells. Two test methods have been used ; Sen's test and Mann-Kendall test. These trend tests have been done at the 0.05 significance level. By the result of Sen's test, Count of Coliform group has either upward or downward trends at 4.3 percent of the monitoring points. pH does at 5.6 percent, COD does at 8.6 percent, Nitrate-Nitrogen does at 13.2 percent, Chloride does at 13.4 percent, and. EC does at 11.6 percent of the monitoring points. The exact causes of the groundwater quality trends are difficult to specify. Notable downward trends in nitrate at many monitoring points may be the result of reduction on some contamination sources. Potential causes include diminished agricultural areas, improvements in sewage treatment and a decrease in atmospheric deposition. Increase in chloride at many monitoring points may be the result of increased non-point source pollution such as road salting and runoff from sprawling paved developments and suburbs.

  • PDF

Soil Pollution Assessment Based on Ecotoxicological Methods (생태독성학적 기법을 이용한 토양오염평가 방안)

  • An Youn-Joo;Jeong Seung-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.56-62
    • /
    • 2005
  • Chemical analyses are generally used to assess contaminated soils and to monitor the efficiency of soil remediation. In this study, the ecotoxicological methods was suggested to evaluate soil pollution by using a battery of bioassay. Plant assay and earthworm assay were conducted to evaluate ecotoxicity o soils contaminated by heavy metals (cadmium and copper) and oil (BTEX compounds, toluene). Test plants were Zea may, Triticum aestivum, Cucumis sativus, and Sorghum bicolor. The presence of heavy metals decreased the seedling growth. Cucumis sativus and Sorghum bicolor seemed to be good indicator plants which are sensitive to heavy metal pollution as well as BTEX contamination. An earthworm bioassay was performed to predict the ecotoxicity in toluene-contaminated soils, based on a simple contact method. Perionyx excavatus was adopted as a test earthworm species, and the severity of response increased with increasing toluene concentration. The present study demonstrated that ecotoxicological methods could be a quantitative approach to evaluate contaminated soils.

Assessment of Water Pollution by the discharged water of the Abandended Mine

  • Kim, Hee-Joung;Yang, Jae-E.;Lee, Jai-Young;Park, Beang-Kil;Choi, Sang-Il;Jun, Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.167-174
    • /
    • 2004
  • Several metalliferous and coal mines, including Myungjin, Seojin and Okdong located at the upper watershed of Okdong stream, were abandoned or closed since 1988 due to the mining industry promotion policy and thus disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in water pollution in the downstream areas. AMD and waste effluents from the closed coal mines were very strongly acidic showing pH ranges of 2.7 to 4.5 and had a high level of total dissolved solid (TDS) showing the ranges of 1,030 to 1,947 mg/L. Also heavy metal concentrations in these samples such as Fe, Cu, Cd and anion such as sulfate were very high. These parameters of AMD and effluents were considered to be highly polluted as compared to those in the main stream area of the Okdong river and be major pollutants for water and soil in tile downstream area. Pollution indices of the surface water at the upper stream of Okdong river where AMD of the abandoned coal mines was flowed into main stream were in the ranges of 16.3 to 47.1. On the other hand, those at the mid stream where effluents from tailing dams and coal mines flowed into main stream were in tile ranges of 10.6 to 19.5. However, those at the lower stream were ranged from 10.6 to 14.9 These results indicated that mining wastes such as AMD and effluents from the closed mines were tile major source to water pollution at the Okdong stream areas.

  • PDF

Priority Assessment for Remediation of Heavy Metals Closed/Abandoned Mine Areas Using Pollution Indexes

  • Kim Hee-Joung;Yang Jae-E.;Park Byung-Kil;Kong Sung-Ho;Lee Jai-Young;Jun Sang-Ho
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.183-193
    • /
    • 2006
  • Several metalliferous and coal mines, including Seojin and Okdong located at the Kangwon province, were abandoned or closed since 1989 due to the mining industry promotion policy and thus disposed an enormous amount of mining wastes without a proper treatment facilities, resulting in water and soil pollution in the downstream areas. However, no quantitative assessment was made on soil and water pollution by the transport of mining wastes such as acid mine drainage, mine tailing, and rocky waste. In this research, total and fractional concentrations of heavy metals in mining wastes were analyzed and accordingly the degree of water and soil pollutions in the stream area were quantitatively assessed employing the several pollution indices. Concentrations of Ni, Cd, and Pb in soils near the abandoned coal mine areas were 1,240.0, 25.0 and 1,093.0 mg/kg, respectively, and these concentrations were higher than those in soils near the closed metalliferous mine areas. Also Cu concentrations in soils near the tailing dams were about 1967 mg/kg, which is considered as very polluted level. Results demonstrated that soil at the abandoned mine areas were highly contaminated by AMO, tailing, and effluents of the mining wastes. Therefore, a prompt countermeasure on the mining waste treatment and remediation of the codntaminated water and soil should be made to the abandoned or closed metalliferous and coal mines located at the abandoned mine area.

  • PDF

Spatial variability of heavy metal contamination of urban roadside sediments collected from gully pots in Seoul City (서울시 우수관에서 채취한 도로변 퇴적물의 중금속오염의 공간적 변화)

  • 이평구;유연희;윤성택;신성천
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.2
    • /
    • pp.19-35
    • /
    • 2003
  • In order 새 investigate the spatial and seasonal variations of heavy metal pollution in heavily industrialized urban area, urban roadside sediments were collected for five years from gully pots in Seoul City. A series of studies have been carried out concerning the physicochemical characteristics of the sediments in order to evaluate the contamination of heavy metals such as Cd, Co, Cr, Cu, Ni, Pb and Zn. Roadside sediments and uncontaminated stream sediments were analyzed for total metal concentrations using acid extraction. The roadside sediments are characterized by very high concentrations of Zn (2,665.0$\pm$1,815.0 $\mu\textrm{g}$/g), Cu (445.6$\pm$708.0 $\mu\textrm{g}$/g), Pb (214.3$\pm$147.9 $\mu\textrm{g}$/g) and Cr (182.1$\pm$268.8 $\mu\textrm{g}$/g), indicating an artificial accumulation of these metals to the sediment chemistry. Comparing with average contents of uncontaminated stream sediments, roadside sediments were shown zinc 14 times (up to 64.4), copper 9 times (up to 181.7), lead 6 times (up to 63.7), cobalt 6 times (up to 168.7), nickel 4 times (up to 98.4), cadmium 2 times (up to 12.8) and chrome 2 times (up to 40.2) high content. The relative degree of heavy metal pollution for roadside sediments collected from each district in Seoul City is evaluated using the “geoaccumulation index”. As a result, heavy-metal contamination is highest centering the oldest residential district and industry area, and contamination level decreases as go to outer block of the city. The factor analysis results indicate that the levels of Cu, Ni, Fe and Cr are strongly related to numbers of factories, whereas the concentrations of Cr, Zn and Cd dependant on pollution index, indicating artificial contamination due to site-specific traffic density.

Application and Assesment of Regrouting Method for Improperly Constructed Wells in Jeju Island (제주도의 오염 방지 시공이 부실한 지하수 관정에 대한 구간 차폐 공법의 적용과 평가)

  • Kim, Mijin;Kang, BongRae;Cho, Heuy Nam;Choi, Sung Ouk;Yang, Won-Seok;Park, Wonbae
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.43-51
    • /
    • 2020
  • About 90% of groundwater wells in Jeju Island are reported to be under the threat of contamination by infiltration of the surface pollutants. Most of those wells have improperly grouted annulus which is an empty space between the well and the inner casing. As a remedy to this problem, some of the wells were re-grouted by filling the annulus with cement without lifting an inner casing. In order to evaluate whether this method is appropriate for the geological structure of Jeju Island, two wells (W1 and W2) were selected and this method was applied. The water holding capacity did not decrease while the nitrate levels decreased from 16.8 and 20.2 to 6.8 and 13.8 mg/L in W1 and W2, respectively. The higher nitrate level in W2 is deemed to be influenced by the livestock farms located in the upper area of the well. In addition, transmissivity of the vedose zone was higher in W2 than W1, potentially facilitating the transport of nitrate to the groundwater. The overall result of this study suggests re-grouting of wells for the purpose of protecting water quality of goundwater should take into account geological structure of vadose zone as well as appropriate source control of the contaminants.

The Water Environment at the Seokdae Waste Landfill Area in the Pusan Metropolitan City (부산 석대 폐기물 매립지 일원의 수질 환경)

  • 정상용;권해우;이강근;김윤영
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.4
    • /
    • pp.175-184
    • /
    • 1997
  • The Seokdae Waste Landfill is a middle-sized site used from June, 1987 to May, 1993. Many joints and faults are developed in andesitic rocks and rhyolitic rocks distributed at the landfill. The chemical analyses of leachates, streams and groundwaters sampled in July, 1996 and June, 1997 show that the concentrations of leachates and streams were decreased, and that the groundwater qualities became worse. The groundwater contamination is deeply extended to not only shallow groundwater but also bedrock-groundwater around the Seokdae Waste Landfill Area. The range of groundwater contamination by the leachates is about 500 m to the west and about 1 km to the south from the boundaries of the waste landfill. The development of monitoring wells and pumping wells, the construction of a leachate-treatment facilities, and the adjustment of the existing grout curtains are necessary for the control of water pollution at the Seokdae Waste Landfill Area.

  • PDF