• Title/Summary/Keyword: Groundwater flow simulation

Search Result 169, Processing Time 0.021 seconds

Numerical Simulation for the Subsurface Temperature Distribution Disturbed by Heat-Pump Operation (지열펌프 구동에 의한 지중 온도 분포 변화 모델링 연구)

  • Shin, Ji-Youn;Bae, Gwang-Ok;Lee, Kang-Kun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.40-43
    • /
    • 2006
  • Public demand for the heat pump system as a next generation energy equipment is increasing for its eco-friendly and cost-effective advantage. Many researches have been concentrated on how to calculate and develop its own efficiency, while the possible effect of the heat pump operation on the whole subsurface temperature distribution is relatively less considered, During the current study, subsurface temperature disturbance caused by seasonal surface temperature cycle in Busan area and general W-tube heat pump operation is simulated in 3-dimensional heterogeneous medium. It shows that subsurface deeper than 10m from the surface remains nearly unchanged throughout the 4 seasons and groundwater convect ion in highly permeable layer near the surface acts like a main path of heat plume from heat pump system, This implies the significance of detail descript ion in shallow sedimentary layer or highly permeable layer which plays an important role on the regional flow advection and heat transfer. Also, the effect of groundwater convection increases when the arrangement of the 2 injection pipes and 2 extract ion well is maintained parallel to groundwater flow. Therefore, more careful and detail investigation is required before installation and operation of heat pump system that it may not cause any possible change of microbial ecosystem in the shallow subsurface environment or 'contamination of temperature' for groundwater use as well as the loss of efficiency of the equipment itself. This can also help to design the optimized grouting system for heat pump.

  • PDF

Fracture Network Analysis of Groundwater Folw in the Vicinity of a Large Cavern (분리열극개념을 이용한 지하공동주변의 지하수유동해석)

  • 강병무
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.125-148
    • /
    • 1993
  • Groundwater flow in fractured rock masses is controlled by combined effects of fracture networks, state of geostafic stresses and crossflow between fractures and rock matrix. Furthermore the scaie dependent, anisotropic properties of hydraulic parameters results mainly from irregular paftems of fracture system, which can not be evaluated properly with the methods available at present. The basic assumpfion of discrete fracture network model is that groundwater flows only along discrete fractures and the flow paths in rock mass are determined by geometric paftems of interconnected fractures. The characteristics of fracture distribution in space and fracture hydraulic parameters are represented as the probability density functions by stochastic simulation. The discrete fracture network modelling was aftempted to characterize the groundwater flow in the vicinity of existing large cavems located in Wonjeong-ri, Poseung-myon, Pyeungtaek-kun. The fracture data of $1\textrm{km}^2$ area were analysed. The result indicates that the fracture sets evaluated from an equal area projection can be grouped into 6 sets and the fracture sizes are distributed in longnormal. The conductive fracture density of set 1 shows the highest density of 0.37. The groundwater inflow into a carvem was calculated as 29ton/day with the fracture transmissivity of $10^{-8}\textrm{m}^2/s$. When the fracture transmissivity increases in an order, the inflow amount estimated increases dramatically as much as fold, i.e 651 ton/day. One of the great advantages of this model is a forward modelling which can provide a thinking tool for site characterization and allow to handle the quantitative data as well as qualitative data.

  • PDF

A Method of Simulating Ephemeral Stream Runoff Characteristics in Cheonmi-cheon Watershed, Jeju Island (제주 천미천 유역의 간헐하천 유출특성 모의 방안)

  • Kim, Nam-Won;Chung, Il-Moon;Na, Hanna
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.523-531
    • /
    • 2013
  • In this study, a method of simulating ephemeral stream runoff characteristics in Jeju watershed is newly suggested. The process based conceptual-physical scheme is established based on the SWAT-K and applied to Cheonmi-cheon watershed which shows the typical pattern of ephemeral stream runoff characteristics. For the proper simulation of this runoff, the intermediate flow and baseflow are controlled to make downward percolation should be dominant. The result showed that surface runoff simulated by using the modified scheme showed good agreement with observed runoff data. In addition, it was found that the estimated runoff directly affected the groundwater recharge rate. This conceptual model should be continuously progressed including rainfall interception, spatially estimated evapotranspiration and so forth for the reasonable simulation of the hydrologic characteristics in Jeju island.

Koreanized Analysis System Development for Groundwater Flow Interpretation (지하수유동해석을 위한 한국형 분석시스템의 개발)

  • Choi, Yun-Yeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.3 s.10
    • /
    • pp.151-163
    • /
    • 2003
  • In this study, the algorithm of groundwater flow process was established for koreanized groundwater program development dealing with the geographic and geologic conditions of the aquifer have dynamic behaviour in groundwater flow system. All the input data settings of the 3-DFM model which is developed in this study are organized in Korean, and the model contains help function for each input data. Thus, it is designed to get detailed information about each input parameter when the mouse pointer is placed on the corresponding input parameter. This model also is designed to easily specify the geologic boundary condition for each stratum or initial head data in the work sheet. In addition, this model is designed to display boxes for input parameter writing for each analysis condition so that the setting for each parameter is not so complicated as existing MODFLOW is when steady and unsteady flow analysis are performed as well as the analysis for the characteristics of each stratum. Descriptions for input data are displayed on the right side of the window while the analysis results are displayed on the left side as well as the TXT file for this results is available to see. The model developed in this study is a numerical model using finite differential method, and the applicability of the model was examined by comparing and analyzing observed and simulated groundwater heads computed by the application of real recharge amount and the estimation of parameters. The 3-DFM model is applied in this study to Sehwa-ri, and Songdang-ri area, Jeju, Korea for analysis of groundwater flow system according to pumping, and obtained the results that the observed and computed groundwater head were almost in accordance with each other showing the range of 0.03 - 0.07 error percent. It is analyzed that the groundwater flow distributed evenly from Nopen-orum and Munseogi-orum to Wolang-bong, Yongnuni-orum, and Songja-bong through the computation of equipotentials and velocity vector using the analysis result of simulation which was performed before the pumping started in the study area. These analysis results show the accordance with MODFLOW's.

A Preliminary Study of Enhanced Predictability of Non-Parametric Geostatistical Simulation through History Matching Technique (히스토리매칭 기법을 이용한 비모수 지구통계 모사 예측성능 향상 예비연구)

  • Jeong, Jina;Paudyal, Pradeep;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.56-67
    • /
    • 2012
  • In the present study, an enhanced subsurface prediction algorithm based on a non-parametric geostatistical model and a history matching technique through Gibbs sampler is developed and the iterative prediction improvement procedure is proposed. The developed model is applied to a simple two-dimensional synthetic case where domain is composed of three different hydrogeologic media with $500m{\times}40m$ scale. In the application, it is assumed that there are 4 independent pumping tests performed at different vertical interval and the history curves are acquired through numerical modeling. With two hypothetical borehole information and pumping test data, the proposed prediction model is applied iteratively and continuous improvements of the predictions with reduced uncertainties of the media distribution are observed. From the results and the qualitative/quantitative analysis, it is concluded that the proposed model is good for the subsurface prediction improvements where the history data is available as a supportive information. Once the proposed model be a matured technique, it is believed that the model can be applied to many groundwater, geothermal, gas and oil problems with conventional fluid flow simulators. However, the overall development is still in its preliminary step and further considerations needs to be incorporated to be a viable and practical prediction technique including multi-dimensional verifications, global optimization, etc. which have not been resolved in the present study.

Numerical simulation of the change in groundwater level due to construction of the Giheung Tunnel (기흥터널 건설에 따른 지하수 변화 수치모델링)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Cheong, Jae-Yeol;Jeong, Jae-Hyeong;Kim, Ki-Seok;Kim, Nam-Hoon;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.449-459
    • /
    • 2010
  • We performed numerical simulations of the excavation of an underground structure (the Giheung Tunnel) in order to evaluate the rate of groundwater flow into the structure and to estimate the groundwater level around the structure. The tunnel was constructed in Precambrian bedrock in Gyeonggi Province, South Korea. Geological and electrical resistivity data, as well as hydraulic test data, were used for the numerical modeling. The modeling took into account the strike-slip faults that cross the southern part of Giheung Tunnel, as these structures influence the discharge of groundwater into the tunnel. The transient modeling estimated a groundwater flow rate into the tunnel of $306\;m^3$/day, with a grout efficiency of 40%, yielding good agreement between the calculated change in groundwater level (6.20 m) and that observed (6.30 m) due to tunnel excavation.

Groundwater Flow Analysis using Numerical model in Small Basin (소규모유역의 수치모헝을 이응한 지하수 유동해석)

  • 최윤영
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.615-626
    • /
    • 2003
  • The applied model for this study area is WINFLOW using mite element method, It is thought that the simulation result by WINFLOW model under the steady flow state reflects well the ground water distribution within the reliability level which shows the error range of 1.1% to 8.0% from the comparison between the computed values and the observed, and analyzed that the constant head distribution is shown along the east-west direction and gentle and stable head gradient along the north-south direction. Ground water of the study area shows stable movement from the south to the stream area, and the particle trace for each location shows relatively linear shape from the upstream to the pumping location while the radius of influence according to the pumping amount shows a significant difference at the down stream area from the pumping location. The simultaneous pumping from P and P1 shows more complicated appearance, not the increase of the radius of influence than pumping from a single well P or P1, and it is analyzed that the particle path takes nearly linear form. It is known that the flow direction of the ground water and the velocity of the flow affect on the magnitude of the radius of influence of the wells from the fact that the more decreasing pattern of the ground water head is observed at the side of the well and the down stream area than the upstream area when the ground water moves from south to north regarding the radius of influence according to the pumping amount. Satisfactory results in analyses of ground water movement are obtained through the significant reduction of the physical uncertainties in the flow system as well as the relatively convenient model application using WINFLOW model which is proposed in this study.

Numerical Modeling of Seawater Intrusion in Coastal Aquifer (연안 대수층에서 해수침투 축성 해석)

  • 이연규;이희석
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.229-240
    • /
    • 2004
  • Coastal aquifers may serve as major sources fur freshwater. In many coastal aquifers, intrusion of seawater has become one of the major constraints imposed on groundwater utilization. The management of groundwater in coastal acquifers means making decision as to the pumping rate and the spatial distribution of wells. Several numerical techniques for flow and solute transport simulation can provide the means to achieve this goal. As a basic study to predict the intrusion of seawater in coastal phreatic aquifers, the coupled flow and solute transport analysis was conducted by use of the 3-D finite element code, SWICHA. In order to understand how the location and the shape of freshwater-seawater transition zone were affected by the boundary conditions and hydrogeologic variables, parametric study was carried out.

A set of failure variables for analyzing stability of slopes and tunnels

  • Kim, Jun-Mo;Lee, Sungho;Park, Jai-Yong;Kihm, Jung-Hwi;Park, Sangho
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.175-189
    • /
    • 2020
  • A set of relatively simple five local shear and tension failure variables is presented and then implemented into a generalized poroelastic hydromechanical numerical model to analyze failure potential and stability of variably saturated geologic media. These five local shear and tension failure variables are formulated from geometrical relationships between the Mohr circle and the Mohr-Coulomb failure criterion superimposed with the tension cutoff, which approximate together the Mohr effective stress failure envelope. Finally, fully coupled groundwater flow and land deformation in two variably saturated geologic media, which are associated with a slope (Case 1) and a tunnel (Case 2), respectively, and their failure potential and stability are simulated using the resultant hydromechanical numerical model. The numerical simulation results of both cases show that shear and tension failure potential and stability of variably saturated geologic media can be analyzed numerically simply and efficiently and even better by using the five local shear and tension failure variables as a set than by using the conventional factors of safety against shear and tension failures only.

A Comprehensive Groundwater Modeling using Multicomponent Multiphase Theory: 1. Development of a Multidimensional Finite Element Model (다중 다상이론을 이용한 통합적 지하수 모델링: 1. 다차원 유한요소 모형의 개발)

  • Joon Hyun Kim
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.89-102
    • /
    • 1996
  • An integrated model is presented to describe underground flow and mass transport, using a multicomponent multiphase approach. The comprehensive governing equation is derived considering mass and force balances of chemical species over four phases(water, oil, air, and soil) in a schematic elementary volume. Compact and systemati notations of relevant variables and equations are introduced to facilitate the inclusion of complex migration and transformation processes, and variable spatial dimensions. The resulting nonlinear system is solved by a multidimensional finite element code. The developed code with dynamic array allocation, is sufficiently flexible to work across a wide spectrum of computers, including an IBM ES 9000/900 vector facility, SP2 cluster machine, Unix workstations and PCs, for one-, two and three-dimensional problems. To reduce the computation time and storage requirements, the system equations are decoupled and solved using a banded global matrix solver, with the vector and parallel processing on the IBM 9000. To avoide the numerical oscillations of the nonlinear problems in the case of convective dominant transport, the techniques of upstream weighting, mass lumping, and elementary-wise parameter evaluation are applied. The instability and convergence criteria of the nonlinear problems are studied for the one-dimensional analogue of FEM and FDM. Modeling capacity is presented in the simulation of three dimensional composite multiphase TCE migration. Comprehesive simulation feature of the code is presented in a companion paper of this issue for the specific groundwater or flow and contamination problems.

  • PDF