• Title/Summary/Keyword: Groundwater dam

Search Result 105, Processing Time 0.028 seconds

Analysis of the Effects of Groundwater Dam for Groundwater Resources Management in Pohang Region (포항지역의 지하수자원 관리를 위한 지하댐 적용 효과 분석)

  • Yang, Jeong Seok;Kim, Il Hwan;Park, Ki Tae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.325-325
    • /
    • 2016
  • 산업화 이후 연안지역을 중심으로 공업지역 등의 조성으로 많은 개발이 진행되어 왔다. 개발된 지역은 불투수 면적이 증가하고 연안지역의 특성상 하천으로 인한 수자원 공급과 더불어 지하수 이용량이 상대적으로 높게 나타나고 있다. 또한 기후온난화로 인해 해수면이 상승하고 있어 해수 침투는 점점 가속화되고 있다. 연안지역의 공업지대는 수자원 공급뿐만 아니라 해수침투로 인한 피해가 갈수록 증가할 것으로 보인다. 최근 해수침투에 대한 피해 방지를 위해 인공 주입 및 함양, 지하댐 등을 통해 지하수자원 관리에 대한 연구가 활발히 진행되고 있다. 이에 본 연구에서는 지하수자원 관리 기법 중 지하댐을 설치하여 해수침투를 방지하고 지하수자원을 확보하고자 한다. Visual MODFLOW를 이용하여 포항지역을 대상으로 지하댐을 적용한다. 지하댐의 설치 방법에 대해서도 다양한 시나리오를 이용하여 효과 분석을 실시한다. 이를 이용하여 지속가능한 지하수자원 관리를 도모하고자 한다.

  • PDF

A Study on the Infiltration Porperties of Cement Grout Material (시멘트계 주입재의 침투특성에 관한 실험적 연구)

  • 천병식;신동훈;이종욱;김진춘;이준우;안익균;이승범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.297-304
    • /
    • 2002
  • This study is about penetrability of Micro Cement(MC) used for ground improvement. In this study, the characteristics of chemical grouting such as solidification, penetrability were analyzed experimentally by changing permeability of ground, grain size and relative density of grout material. For evaluating applicability of grout material, solidification test and penetrability test were performed. From the results of the tests, effective solidification ratio and penetrability ratio of MC was each 75%, 86% to be excellent when ground permeability was in the range of 10$^{-2}$ and 10$^{-4}$ cm/sec. Otherwise, those of Ordinary Portland Cement(OPC) were both lower than 50% to be poor. When penetrability of grout material is needed for improvement of dam foundation and soft ground, application of MC Is much superior to that of the other materials. The results of the grouting tests in the water flowing ground show that solidification effect of long gel-time grout material is excellent as injection pressure increases when groundwater velocity is relatively low. But when groundwater velocity is relatively high, solidification effect of long gel-time grout material is very poor because most grout materials are outflowed. Therefore, as groundwater velocity is high, effective solidification ratio of long gel-time grout material is better than that of short gel-time grout material, also penetration distance of long gel-time grout material is longer than that of short gel-time grout material.

  • PDF

Relation between Groundwater Inflow into the Waterway Tunnel and Hydrogeological Characteristics in Hyeonseo-myeon, Cheongsong-gun, Korea (청송군 현서면 일대 도수로터널내 지하수 유입량과 수리지질 특성의 관련성)

  • 박재현;함세영;성익환;이병대;정재열
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.141-152
    • /
    • 2001
  • The waterway tunnel zone (length 1,484m) in the Hyeonseo-myeon area that is a part of Yeongcheon dam waterway tunnel has been studied to characterize the relationship between groundwater inflow into the waterway tunnel and hydrogeologic characteristics. The effects of sandstone thickness in the tunnel section. fracture density, fracture aperture and spacing, fault zone width and hydraulic conductivity on the early inflow (inflow prior to the lining and grouting) are investigated. The relationship between fracture density and hydraulic conductivity is also considered. The result of the study suggests that fault zone width has the greatest effect on groundwater inflow into the tunnel, and sandstone thickness, hydraulic conductivity and fracture density in order shows an influence on the inflow.

  • PDF

Policy of Soil Environment and Restoration Technology-Status and Recent Changes (토양환경 정책 및 복원 기술-현황과 최근변화)

  • Jang, Yeon-Su
    • Journal of the Korean Professional Engineers Association
    • /
    • v.41 no.3
    • /
    • pp.30-34
    • /
    • 2008
  • Recently problems of soil and groundwater contamination occur in major construction sites of highway, dam and railways. Contaminants of oil fuels are also detected in the former fuel storage facilities of railroad station and army troops of transportation, etc. These facilities are planned as the sites of commercial infrastructures after restoration from pollutants by the law of soil environment conservation of Korea. In this manuscript, the contents of soil environment conservation law including soil assessment and restoration technology are introduced. Recent changes of soil environment area are also analyzed.

  • PDF

The probabilistic drought forecast based on ensemble using improvement of the modified surface water supply index (Modified surface water supply index 개선을 통한 앙상블 기반 확률론적 가뭄전망)

  • Jang, Suk Hwan;Lee, Jae-Kyoung;Oh, Ji Hwan;Jo, Joon Won
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.835-849
    • /
    • 2016
  • Accurate drought outlook and drought monitoring have been preceded recently to mitigate drought damages that further deepen. This study improved the limitations of the previous MSWSI (Modified Surface Water Supply Index) used in Korea and carried out probabilistic drought forecasts based on ensemble technique with the improved MSWSI. This study investigated available hydrometeorological components in Geum river basin and supplemented appropriate components (dam water level, dam release discharge) in addition to the four components (streamflow, groundwater, precipitation, dam inflow) usedin the previous MSWSI to each sub-basin. Although normal distribution was fitted in the previous MSWSI, the most suitable probabilistic distributions to each meteorological component were estimated in this study, including Gumbel distribution for precipitation and streamflow data; 2-parameter log-normal distribution for dam inflow, water level, and release discharge data; 3-parameter log-normal distribution for groundwater. To verify the improved MSWSI results using historical precipitation and streamflow, simulated drought situations were used. Results revealed that the improved MSWSI results were closer to actual drought than previous MSWSI results. The probabilistic forecasts based on ensemble technique with improved MSWSI were performed and evaluated in 2006 and 2014. The accuracy of the improved MSWSI was better than the previous MSWSI. Moreover, the drought index of actual drought was included in ranges of drought forecasts using the improved MSWSI.

A Hydrological Analysis of Current Status of Turbid Water in Soyang River and Its Mitigation (소양강 탁수 현황과 저감에 대한 수리학적 분석)

  • Lee, Jin-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.85-92
    • /
    • 2008
  • Water in Soyang River is an essential source for citizens of Chuncheon and Seoul areas. In 2006, turbid water in Soyang River aggravated by the typhoon Ewiniar, sustained for over 280 days unlike conventional years, then which interrupted water supply of Chuncheon and Seoul areas. Soil erosion derived from high cool lands constituting about 55% of Soyang River area is considered one of main causes for the turbid water, including imprudent development of mountainous area, road expansion, and road construction for forestry. According to analysis of turbidity, precipitation and reservoir level in Soyang River region for June 2006${\sim}$August 2008, the turbidity showed a peak correlation (r = 0.28) at a lag time of 49 days and especially did an excellent correlation (r = 0.60) with the reservoir level at a lag of 4 days. In the meantime, a critical turbidity of 31 NTU at Soyanggang Dam was estimated, over which would cause turbid water at Paldang Dam. In addition, a master recession curve was suggested, from which sustaining time of turbid water can be predicted.

Comparison of SWAT-K and HSPF for Hydrological Components Modeling in the Chungju Dam Watershed (충주댐 유역의 SWAT-K와 HSPF모형에 의한 수문성분 모의특성 비교 분석)

  • Kim, Nam-Won;Shin, Ah-Hyun;Kim, Chul-Gyum
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.609-619
    • /
    • 2009
  • SWAT-K model is a modified version of the original SWAT, and is known to more accurately estimate the streamflows and pollutant loadings in Korean watersheds. In this study, its hydrological components were compared with those of HSPF in order to analyse the differences in total runoff including evapotranspiration(ET), surface flow, lateral flow and groundwater flow from the Chungju Dam watershed during $2000{\sim}2006$. Averaged annual runoff with SWAT-K overestimated by 1%, and HSPF underestimated it by 3% than observed runoff. Determination coefficients($R^2$) for observed and simulated daily streamflows by both the models were relatively good(0.80 by SWAT-K and 0.82 by HSPF). Potential ET and actual ET by HSPF were lower in winter, but similar or higher than those by SWAT-K. And though there were some differences in lateral and groundwater flows by two models because of the differences in hydrological algorithms, the results were to be reasonable. From the results, it was suggested that we should utilize a proper model considering the characteristic of study area and purposes of the model application because the simulated results from same input data could be different with models used. Also we should develop a novel model appropriate to Korean watersheds by enhancing limitations of the existing models in the future.

Trend and Barrier in the Patents of Artificial Recharge for Securing Goundwater (지하수자원 확보를 위한 인공함양 기술 특허동향 및 장벽 분석)

  • Kim, Yong-Cheol;Seo, Jeong-A;Ko, Kyung-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.3
    • /
    • pp.59-75
    • /
    • 2012
  • It is getting difficult to manage water resources in South Korea because more than half of annual precipitation is concentrated in the summer season and its intensity is getting severe due to global warming and climate change. Artificial recharge schemes can be a useful method to manage water resources in Korea adapting to climate change. Patent analysis enables us to prevent overlapping investment and to find out unoccupied technology. In this study, international patent trends and barriers of artificial recharge technology are analysed for patents of Korea, Japan, the United States and Europe. The four artificial recharge methods such as well recharge, surface infiltration, bank filtration and underground structures are classified as main class and the nine sub-technologies such as water intake, water treatment, injection wells, monitoring of groundwater flow, groundwater pumping, surface infiltration/soil aquifer treatment, radial collection well, iron/manganese treatment, and underground subsurface dam are classified as intermediate class. Water intake techniques are subdivided into five classifications. Total 1,281 of patents, searched by WIPS DB tool and selected after removing noisy patents, are analyzed quantitatively to evaluate application trends by year, applicant, country for each classified technologies and analyzed qualitatively to find out occupied and unoccupied technologies. It is expected that upcoming research and development project could be performed efficiently in that an avoidance plan for the similar patents and differentiation plan for the advancing patents are set up based on the quantitative and qualitative analysis results from this research.

A Study on Groundwaters being Discharged into East Sea along the Shoreline of Southern of Southern Korean Peninsula (한반도 동해안 유출 지하수에 대한 연구)

  • Kim, Hyeong-Su;Kim, Seong-Ju
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.1
    • /
    • pp.71-84
    • /
    • 2001
  • A study was initiated to investigate whether the groundwaters being discharged into the sea could be used as a possible water resources. This paper presents a preliminary information about the groundwaters being discharged along the shoreline of East Sea. Major discharge sites were selected primarily on the basis of the informaion on surface temperatures of the sea. Hydrogeologic and geographic conditions were also considered in selecting the major discharge sites. The development possibility of the discharging groundwater were estimated roughly, considering populations, industries and social development compatibilities of the selected areas. Groundwater dams and linked usage with surface water were suggested as possible development methods for the groundwaters.. Based on this study, we selected about 60 sites as the major discharge areas and tentatively recommended 6 sites as optimal sites for development of groundwaters being discharged into the sea. However, detailed in-situ hydrogeologic surveys are required prior to the final decision.

  • PDF

Drinking Water Usage with Riverbed water and Groundwater

  • Kim, Il-Bae;Lee, Soo-Sik;Choi, Yun-Yeong;Suh, Jung-Ho;Lee, Hak-Sung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.151-154
    • /
    • 2003
  • With estmating drinking water demands of Ulsan city, the amount would be increased from 523,000ton/day in 2006 to 635,000 ton/day in 2016. Also, the dependence of Nakdong River on the Ulsan city as a source of drinking water will be very high up to 54.4% of total drinking water demands. Small-scale drinking water dam is no economical because of excessive construction cost and long construction period. However, development of riverbed and ground water of existing rivers is more economical than that of small-scale drinking water dam. In this study, to utilized Dongchun River as a drinking water resource, Modflow model was used to predict the amount of riverbed and ground water of Dongchun River basin. As a result, available amount of riverbed water was assumed in 6,000 ton/day by worst case (when perfect dry stream) and in case of ground water, it was assumed in 17,800 ton/day.

  • PDF