• Title/Summary/Keyword: Groundwater Movement

Search Result 130, Processing Time 0.02 seconds

Evaluation of Groundwater Level Decline and Water Quality Due to Tunnel Excavation (터널굴착으로 인한 지하수위 저하 및 수질영향 평가)

  • Kim, Min Gyu;Kim, Minsoo;Jeong, Gyocheol;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.113-122
    • /
    • 2019
  • In this study, the flow analysis to evaluate the extent of groundwater decline and the effect of the small valleys caused by the decrease of groundwater level in the construction of road tunnel, and the pollutant movement analysis to evaluate pollution of nearby water source by pollutant discharge during tunnel construction, respectively. The decrease of the groundwater during the 30 month tunnel excavation period was maximum 27 m and it was found to be the largest within 50 m from the tunnel center. The flow of groundwater is shown in the form of flowing into the tunnels and the effects of groundwater level decline were observed up to a tunnel radius of 200 m. As a result of the numerical modeling of the contaminant transport to examine the influence of the polluted water discharge from the tunnel, the range of the turbid water generated at the end of the tunnel is up to 120 m and it is estimated that the risk of contamination of the small river is not large.

Behaviour of $NO_3-N$ in Soil and Groundwater Quality (토양(土壤)중 질산태질소(窒酸態窒素)의 행동(行動)과 지하수질(地下水質))

  • Yun, Sun-Gang;Yoo, Sun-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.3
    • /
    • pp.281-297
    • /
    • 1993
  • Nitrogen is an element required to meet optimal plant growth. However, when it was applied (as chemical fertilizer or animal waste) more than the demand of plant and managed it unreasonably can be accumulated in subsoil and leached from soil system. Nitrogen also can be act as an pollutant to soil and water through water contamination if its concentration exceed the critical level. The concentration and downward movement of nitrate in soil is influenced by cultural practices and soil properties. High level of nitrate nitrogen in drinking water is harzadrous for animal and human health, especially for infants and the restoration of the quality of groundwater is impossible by now. Therefore it is the only way to prevent from leaching of nitrate nitrogen to keep the quality of groundwater as vital water resource. The aims of the presentation of this review paper are to understand the relationship between agricultural practices and the concentration of nitrate nitrogen in groundwater and to suggest further informations for the rational management methods to reduce the leaching of nitrate nitrogen in soil.

  • PDF

Urban Excavation - Induced Ground Movement in Water Bearing Ground Using Stress-pore Pressure Coupled Analysis (응력 -간극수압 연계해석을 이용한 흙막이 굴착시 지하수저하에 따른 지반침하에 관한 연구)

  • Choi, Go-Ny;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.17-31
    • /
    • 2011
  • This paper presents the results of a numerical investigation on the behavior of earth retaining wall system with emphasis on the groundwater lowering. Using the 2D stress-pore pressure coupled analysis, the effects of ground excavation and groundwater interaction were examined using wall horizontal deformation, ground surface movement, plastic strain pattern, effective stress distribution and axial stress of strut. In addition, based on the results from a parametric study on a wide range of soil profile and initial ground water table level, the ranges of wall displacement and ground deformation were suggested quantitatively.

Remediation of Contaminated Soil and Groundwater in Korea: Suggestions for Progress (국내 토양과 지하수 오염 복원사업에 대한 고찰)

  • Lee S. Y.;Lee Chae-Young;Kim Doo-Il
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.23-33
    • /
    • 2001
  • Soil and groundwater contamination is an emerging national issue in recognition of the potential adverse impact to human health and ecosystem. In a recent registration, property owner's liability was addressed on the damages to neighbor's soil and groundwater caused by contaminant-plume migration. Soil and groundwater remediation is a technical and engineering project. But, the scientific and technical solutions for the project have been greatly influenced by social and political movement in the country. Governmental sectors, including local and central, should actively engage on this important issue through long-term planning and public investments. Government made regulations to prevent soil and groundwater contamination, not to punish private sector that has no technical and financial capability for solving such problems.

  • PDF

Regional-Scale Evaluation of Groundwater Susceptibility to Nitrate Contamination Based on Soil Survey Information (토양정보를 이용한 광역 지하수의 질산태 질소 오염 민감도 분포 분석)

  • Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • Susceptibility assessment of groundwater contamination is a useful tool for many aspects of regional and local groundwater resources planning and management. It can be used to direct regulatory, monitoring, educational, and policy-making efforts to highly vulnerable areas. In this study, a semi process-based was proposed to evaluate relative susceptibilities to groundwater contamination by nitrate on a regional scale. Numerical simulation based on data from each soil series was done to model water flow within soil profiles that were related to groundwater contamination by nitrate. Relative vulnerability indices for each soil series were produced by manipulation of amount of leaching flux, amount of average water storage in a soil profile, and amount of average water storage change. These indices were designed to convey the trend of leaching flux and to maximize spatial resolution. The resulting vulnerability distribution map was used to locate highly vulnerable sites easily with an appropriate grouping the indices, and was then compared with those from groundwater nitrate concentrations monitored. An excellent agreement was obtained across nitrate concentrations from the highly vulnerable regions and those from the low to stable regions.

A Study on the Effect of Collector Well on the Landcreep Slope (땅밀림 비탈면내 집수정 설치 효과 연구)

  • Jeon, Byeong Chu;Lee, Su Gon
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.123-136
    • /
    • 2019
  • This study examines the effect of collector well installed to reduce groundwater level in the regions with the occurrence of landcreep, a soil mass movement triggered by instability on slopes. Slopes are prone to failure as a result of instability caused by its internal, topographic and geological properties as well as due to external factors such as rainfall and earthquake. In Korea during the rain season, rainfall infiltration affects the groundwater level in soil, building up porewater pressure and load, and finally drives slopes to collapse. Slope failure caused by rainfall infiltration has been leading to a drastic forest degradation. The studied slope is located adjacent to a valley, its terrain corresponds to piedmont gentle slope, while the upper part of the failure surface is steep. After reinforcing the terrain where landcreep had occurred and installing collector well on the slope, we measured the changes in the groundwater level. In order to analyze the relationship between the well and the slope, we calculated the ratio of groundwater level to rainfall before and after the installation of the collector well. As a result, it is confirmed that the ratio increases after the installation of the well, which in turn reduces the groundwater level. Analysis of the change in groundwater level after 3, 7, 15 days antecedent rainfall showed that the higher the overall groundwater level, the less the value ($r_p$) of groundwater level-rainfall ratio is, while the value becomes relatively greater when the groundwater level is low. In particular, if a slope has a large catchment basin as is in the case of the studied site, antecedent rainfall affects groundwater level in the order of 3 < 7 < 15 days.

Groundwater Systems in Seoul Area : Analysis of Hydraulic Properties (서울지역 지하수 시스템 조사 : 수리적 특성 분석)

  • 김윤영;이강근;성익환
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.51-73
    • /
    • 1998
  • Hydrogeological systems in a metrnpolitan area can be understood by analyzing the groundwater disturbing factors such as constructions and land applications, the groundwater usage for domestic and industrial purposes, and the groundwater pumpage to lower the groundwater level for the structural safety of subway and underground facilities. This study is part of the study performed to understand the groundwater system in the Seoul area and it is focusing on the hydraulic properties. Groundwater well inventory, barometric efficiency measurements, pumping and slug tests, and long-term groundwater monitoring have been perfonrmed during the last 2 years. The relations between Han River and the groundwater around the river also have been observed. These observations and test data, together with the information on soil distribution, geology, and logging data are used to construct a database and GIS(Geographic Information System) presentation system using ARC/INFO. Barometric efficiencies appeared to have no special trends associated with well depths, which maeans that the degree of confinement of the crystaline rock aquifer of the Seoul area is distributed locally depending on the developrnent of fractures. Hydraulic conductivities exponentialiy decrease with well depth. The stage of Han River fluctuates according to the tidal movement of nearby seawater but the tidal effects attenuate due to the underwater dams. Groundwater levels in the Seoul area seem to have declined for the last two years,but it is not certain that the declination represents the long-term trend.

  • PDF

Groundwater Flow Analysis During Excavation for Underground Tunnel Construction (지하 터널 건설을 위한 굴착 시 지하수 유동 분석)

  • Sungyeol Lee;Wonjin Baek;Jinyoung Kim;Changsung Jeong;Jaemo Kang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.6
    • /
    • pp.19-24
    • /
    • 2024
  • Urban densification has necessitated the development of subterranean spaces such as subway networks and underground tunnels to facilitate the dispersal and movement of populations. Development of these underground spaces requires excavation from the ground surface, which can induce groundwater flow and potentially lead to ground subsidence and sinkholes, damaging structures. To mitigate these risks, it is essential to model groundwater flow prior to construction, analyze its characteristics, and predict potential groundwater discharge during excavation. In this study, we collected meteorological, topographical, and soil conditions data for the city of ○○, where tunnel construction was planned. Using the Visual MODFLOW program, we modeled the groundwater flow. Excavation sections were set as drainage points to monitor groundwater discharge during the excavation process, and the effectiveness of seepage control measures was assessed. The model was validated by comparing measured groundwater levels with those predicted by the model, yielding a coefficient of determination of 0.87. Our findings indicate that groundwater discharge is most significant at the beginning of the excavation. Additionally, the presence of seepage barriers was found to reduce groundwater discharge by approximately 59%.

A survey on the fluctuation of dissolved solids into the groundwater in Chejudo (제주도 지하수의 증분변화에 대한 고제)

  • 금성홍;신승종;오상실;송가기;오순미
    • Journal of environmental and Sanitary engineering
    • /
    • v.8 no.1
    • /
    • pp.67-80
    • /
    • 1993
  • This survey was carried out to take the status of seawater intrusion into groundwater wells located in the eastern area of Chejudo, to get the elementary data which may evaluate the level of would-be groundwater contamination, and to perform effective the effort that will supply the clear water for the residents. The sampling sites were northeastern districts of Haengwon, Handong, and Sangdo, southeastern districts of Susan, Nansan, and Samdal, and northwestern districts, as reference, of Aewol, Keumnung, Panpo, Kosan, Shindo, and Bosung. We collected the samples from the public tap water by month, and analysed electrical conductivity, sodium(Na), potassium(K), magnesium(Mg), calcium(Ca), bicarbonate($HC0_{3^-}$), and items of the criteria as drinking water. In the northeastern districts we also added the sampling sites to survey the fluctuations of dissolved solids according to distance from seashore, including two private boreholes and one public tap water of Dukchun. The result is as follows 1) In the northeastern district, the concentration of chloride ion showed large fluctations from 40mg/l to 100mg/l, but suitable for the criteria of drinking water. It was thought that the drought influenced. 2) In the Sangdo of the northeastern districts, similar tendancy to Hangwon and Handong was showed only in the concentration of chloride ion, but different tendancy was showed in chloride-bicarbonate ratio, calcium-magnesium ratio, and sodium adsorption ratio(SAR). Considering these facts, it was not thought that seawater intruded. 3) The components of Na and Cl showed rapid slope in the northeastern districts above 3km from seashore. 4) In the northwestern districts as reference, the concentration of chloride ion fluctuated slightly according to the sampling sites and dates, and the concentration of nitrate-nitrogen in some sites exceeded the criteria of drinking water. These were thought that the surface contaminants rather than the intrusion of seawater influenced mainly the groundwater, considering the correlation(r=0.732) of chloride ion and nitrate-nitrogen. 5) Then we must consider the regional characteristies of soil profile in order to prevent the contamination of groundwater, and moniter also the movement of main components within the sol1 profile, not only the research of the intrusion of seawater.

  • PDF

Numerical Simulation of Groundwater Flow in Feterogenetic Rockmass of Unsaturated Condition (암반의 불균질성을 고려한 불포화대 지하수 유동 평가)

  • Ha, Jaechul;Lee, Jeong Hwan;Cheong, Jae-yeol;Jung, Haeryong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.87-99
    • /
    • 2016
  • We present the results of two-dimensional numerical simulations predicting the flow of groundwater in a fractured unsaturated zone. We applied the k-field distribution of permeability derived from discrete fracture network (DFN) modeling as the hydraulic properties of a model domain. To model an unsaturated zone, we set the depth from the ground surface to the underground aquifer. The rate of water infiltration into the unsaturated zone was divided into two parts, an artificial structure surface and unsaturated soil zone. The movement of groundwater through the unsaturated zone was simulated with particular emphasis on contaminant transport. It was clearly observed that the contaminants dissolved in groundwater transported vertically from the ground surface to the saturated zone.