• 제목/요약/키워드: Grounding Electrodes

검색결과 115건 처리시간 0.031초

MATLAB 프로그램을 이용한 배전계통에 사용되는 동봉 접지전극의 과도 접지임피던스 특성 분석 (Transient Grounding Impedance Characteristic Analysis of a Copper Rod-type Grounding Electrode Used for Electric Distribution Systems Using MATLAB Program)

  • 김경철;오경훈;이규진;심건보;최종기
    • 조명전기설비학회논문지
    • /
    • 제23권9호
    • /
    • pp.40-46
    • /
    • 2009
  • 비록 접지저항은 접지전극의 접지성능을 좌우하는 지수이기는 하지만, 과도상태에서는 접지 성능을 반영하지 못한다. 동봉은 배전계통에서 가장 많이 쓰이는 접지전극이다. 본 논문에서는 동봉의 접지 임피던스를 주파수 60[Hz]에서 100[kHz] 범위까지 측정하여 등가 접지임피던스 모델을 구하였다. 뇌격서지가 유입되었을 때 MATLAB 프로그램으로 과도접지임피던스의 수치와 파형을 시뮬레이션하였다.

Analysis of Risk Voltage for Grounding Electrode by Injection of Earth Leakage Current

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Hyang-Kon;Kil, Gyung-Suk
    • International Journal of Safety
    • /
    • 제8권2호
    • /
    • pp.9-14
    • /
    • 2009
  • This paper describes analysis of risk voltage for grounding electrode where earth leakage current is injected. To assess risk voltage of grounding electrode, the grounding simulator and CDEGS program were used to obtain measured data and theoretical results of this study. The grounding simulator was composed of a hemispherical water tank, AC power supply, a movable potentiometer, and test grounding electrodes. The shapes of grounding electrode model was ground rod. The potential rise was measured by grounding simulator, and the touch and step voltages were computed by CDEGS program. As a consequence, the potential rise of ground rod abruptly decreases with increasing the distance from the grounding electrode to the point to be tested. The touch voltage above the ground rod was low, but the step voltage was high. The measured results were compared with the computer calculated data and were known in good agreement.

수직접지전극의 임계길이 산정 (Computation of Critical Length for Vertical Grounding Electrode and Counterpoise)

  • 이복희;조정현;이봉;김종호;이승주;이강수;김기복;김태기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1491_1492
    • /
    • 2009
  • The impedance of a vertical grounding electrode is not lowered by expanding the dimension of the grounding electrode, and the length of thr vertical grounding electrode which shows the minimum value of the grounding impedance for each condition of frequency and soil characteristics is existent, and it is defined as Critical length. In this paper, the critical lengths for the vertical grounding electrodes are calculated by using the distributed parameter circuit model. The adequacy of the simulations has been confirmed by comparing the simulated results with the measured results.

  • PDF

접지전류 측정에 의한 다중 접지계통의 접지저항 측정 (Measurement of Resistance of Multi-Grounded System by Ground Current Measurement)

  • 최종기;안용호;정길조;한병성;김경철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권4호
    • /
    • pp.234-237
    • /
    • 2004
  • Measuring ground resistance has been a popular method of evaluation of the grounding electrode performance. If some portions of grounding electrodes are lost by corrosion, aging or other reasons, consequent deteriotation of the grounding performance would be resulted. It is one of the reasons why it is required to evaluate the performance of grounding systems regularly. However, in case of the electric facilities with multi-grounded system such as power substations with multi-grounded overhead ground wires and/or distribution line neutrals, it is practically difficult to disconnect neutrals or skywires from the substation grounding mesh for the ground resistance measurement. In this paper, a method for the grounding performance measurement of multi-grounded systems, which is based on the measuring ground current distributions, has been proposed. A field test results has shown the validity of the proposed test method.

접지전류 측정에 의한 다중 접지계통의 접지저항 측정 (Measurement of Resistance of Multi-Grounded System by Ground Current Measurement)

  • 최종기;안용호;정길조;한병성;김경철
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.234-234
    • /
    • 2004
  • Measuring ground resistance has been a popular method of evaluation of the grounding electrode performance. If some portions of grounding electrodes are lost by corrosion, aging or other reasons, consequent deteriotation of the grounding performance would be resulted. It is one of the reasons why it is required to evaluate the performance of grounding systems regularly. However, in case of the electric facilities with multi-grounded system such as power substations with multi-grounded overhead ground wires and/or distribution line neutrals, it is practically difficult to disconnect neutrals or skywires from the substation grounding mesh for the ground resistance measurement. In this paper, a method for the grounding performance measurement of multi-grounded systems, which is based on the measuring ground current distributions, has been proposed. A field test results has shown the validity of the proposed test method.

구조체 접지전극의 유형에 따른 전위경도 특성 (Characteristics of Potential Gradient for the Type of Structure Grounding Electrode)

  • 길형준;최충석;김향곤;이복희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권8호
    • /
    • pp.371-377
    • /
    • 2005
  • This paper Presents the Potential gradient characteristics of structure grounding electrode when a test current flows through grounding electrode. In order to analyze the potential gradient of ground surface on structure grounding electrode, the reduced scale model has been used. The potential gradient has been measured and analyzed for types of structure using the hemispherical grounding simulation system in real time. The structures were designed through reducing real buildings and fabricated with four types on a scale of one-one hundred sixty. The supporter was made to put up with weight of structure and could move into vertical, horizontal, rotary direction. When a test current flowed through structure grounding electrodes, ground potential rise was the lowest value at electric cage type(type B). According to resistivity and absorption percentage In concrete attached to structure, the potential distribution of ground surface appeared differently.

쉴딩차폐와 봉상접지에 관한 연구 (Study for shielded enclosure and rod grounding electrode)

  • 김주찬;김성삼;최종규;이충식;고희석
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.414-417
    • /
    • 2006
  • Especially, the case which the facilities have been shielded in the building. In this case there must be suitable grounding system, and this case must be considered sufficiently to the one part of the design at the design. in addition there must be an electric leakage defense system and The case to be a criterion signal ground system. Rod type grounding electrodes is applied much and we studied the relation that rod type grounding method and shielding room as newly grounding object. in this paper, shield room is the object(target) to be established newly additionally, we try to describe about the flow of a grounding technology concept change and a ground facilities.

  • PDF

수조모델을 이용한 메쉬접지극의 접지저항에 관한 연구 (Study for the Grounding Resistance of the Mesh Grounding Electrode by Water Tank Model)

  • 김주찬;김성삼;최종규;이충식;고희석
    • 조명전기설비학회논문지
    • /
    • 제20권3호
    • /
    • pp.28-35
    • /
    • 2006
  • 최근들어 빌딩내에 있는 많은 전기 전자 통신설비들은 기기 보호 및 안전을 위하여 반드시 접지를 필요로 하며, 고장 전류가 같은 빌딩내에 있는 어떤 접지 시스템으로 흐를 때, 이 전류에 의한 전위상승에 영향을 받아 다른 접지시스템의 전위 상승을 유도할 수 있다. 이러한 전위간섭은 접지극의 표면전위에 의해 영향을 받으며, 전각의 형상과 깊은 관련이 있다. 본 논문에서의 기본적 공식은 전위간섭을 받는 접지극과 전위간섭의 원천이 되는 두 접지극의 표면 전위에 기초하여 추론되었으며, 다중 접지극에 있어서의 전위간섭의 정도는 미리 간단한 모델을 이용하여 시뮬레이션을 실시하였다. 이는 대지위에 설치되는 건조물의 접지저항을 추정하기 위한 것이며, 실제의 현장에서 측정한 접지 저항값과 추정값과의 일치성을 입증하기 위하여 반구형 수조에서 모의 접지시스템의 축적 모델로 실험을 행한 결과, 확실한 메쉬접지극의 접지저항을 얻을 수 있었다. 따라서 수조 모델 실험을 통하여 메쉬접지각의 접지저항을 추정할 수 있음을 보여주고 있다.

접지전류의 주파수에 따른 대지표면전위 상승 및 위험전압의 분석 (An Analysis of the Ground Potential Rises and Dangerous Voltages Associated with the Frequency of Ground Currents)

  • 최종혁;조용승;이복희
    • 조명전기설비학회논문지
    • /
    • 제25권4호
    • /
    • pp.97-103
    • /
    • 2011
  • The most important object of grounding systems is to protect human being from electric shock. Touch and step voltages are measured to evaluate the performances of grounding systems. Dangerous voltages have been largely studied by the power frequency fault currents, on the other hand, the ground current containing the high frequency components and surge currents haven't been considered. Many attempts about the grounding impedances reported in these days show that the performance of the grounding systems in high frequency range is very different with the ground resistance. It is necessary to analyze the dangerous voltages formed by the ground currents containing high frequency components. In this paper, the ground surface potential rises near the vertical and horizontal grounding electrodes are measured at the frequency of 100[Hz], 30[kHz], and 100[kHz]. Dangerous voltages are investigated with the frequency-dependent grounding impedance. As a result, the ground surface potential rise is increased as the grounding impedance increases. Touch and step voltages near the grounding electrode whose impedance increases with the frequency are sharply raised.

접지전류의 주파수에 따른 수직 접지전극 주변에서 전위간섭 영향 분석 (An Analysis of Potential Interference Effects in the Vicinity of Ground Rod Depending on Frequency of Ground Currents)

  • 이복희;조용승;최종혁;양순만
    • 조명전기설비학회논문지
    • /
    • 제25권12호
    • /
    • pp.88-93
    • /
    • 2011
  • When the ground current is injected into the adjacent ground electrode, the potential interference is caused between ground electrodes, the ground potential interferences have been largely studied with power frequency fault currents. Many attempts to find the frequency-dependent grounding impedance report that the high frequency grounding impedance is very different with the ground resistance. This paper presents experimental data on the frequency-dependent potential interference effects in the vicinity of ground rod. The ground potential rises around the test ground rod of 4 or 6[m] were measured and discussed. As a result, the ground potential rises and potential interference factor are decreased with decreasing the grounding impedance. It was found that the lowering of grounding impedance is critical to reduce the ground potential interference effects.