• Title/Summary/Keyword: Ground-water irrigation

Search Result 103, Processing Time 0.025 seconds

Studies on the Rice Yield Decreased by Ground Water Irrigation and Its Preventive Methods (지하수 관개에 의한 수도의 멸준양상과 그 방지책에 관한 연구)

  • 한욱동
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.1
    • /
    • pp.3225-3262
    • /
    • 1974
  • The purposes of this thesis are to clarify experimentally the variation of ground water temperature in tube wells during the irrigation period of paddy rice, and the effect of ground water irrigation on the growth, grain yield and yield components of the rice plant, and, furthermore, when and why the plant is most liable to be damaged by ground water, and also to find out the effective ground water irrigation methods. The results obtained in this experiment are as follows; 1. The temperature of ground water in tube wells varies according to the location, year, and the depth of the well. The average temperatures of ground water in a tubewells, 6.3m, 8.0m deep are $14.5^{\circ}C$ and $13.1^{\circ}C$, respercively, during the irrigation period of paddy rice (From the middle of June to the end of September). In the former the temperature rises continuously from $12.3^{\circ}C$ to 16.4$^{\circ}C$ and in the latter from $12.4^{\circ}C$ to $13.8^{\circ}C$ during the same period. These temperatures are approximately the same value as the estimated temperatures. The temperature difference between the ground water and the surface water is approximately $11^{\circ}C$. 2. The results obtained from the analysis of the water quality of the "Seoho" reservoir and that of water from the tube well show that the pH values of the ground water and the surface water are 6.35 and 6.00, respectively, and inorganic components such as N, PO4, Na, Cl, SiO2 and Ca are contained more in the ground water than in the surface water while K, SO4, Fe and Mg are contained less in the ground water. 3. The response of growth, yield and yield components of paddy rice to ground water irrigation are as follows; (l) Using ground water irrigation during the watered rice nursery period(seeding date: 30 April, 1970), the chracteristics of a young rice plant, such as plant height, number of leaves, and number of tillers are inferior to those of young rice plants irrigated with surface water during the same period. (2) In cases where ground water and surface water are supplied separately by the gravity flow method, it is found that ground water irrigation to the rice plant delays the stage at which there is a maximum increase in the number of tillers by 6 days. (3) At the tillering stage of rice plant just after transplanting, the effect of ground water irrigation on the increase in the number of tillers is better, compared with the method of supplying surface water throughout the whole irrigation period. Conversely, the number of tillers is decreased by ground water irrigation at the reproductive stage. Plant height is extremely restrained by ground water irrigation. (4) Heading date is clearly delayed by the ground water irrigation when it is practised during the growth stages or at the reproductive stage only. (5) The heading date of rice plants is slightly delayed by irrigation with the gravity flow method as compared with the standing water method. (6) The response of yield and of yield components of rice to ground water irrigation are as follows: \circled1 When ground water irrigation is practised during the growth stages and the reproductive stage, the culm length of the rice plant is reduced by 11 percent and 8 percent, respectively, when compared with the surface water irrigation used throughout all the growth stages. \circled2 Panicle length is found to be the longest on the test plot in which ground water irrigation is practised at the tillering stage. A similar tendency as that seen in the culm length is observed on other test plots. \circled3 The number of panicles is found to be the least on the plot in which ground water irrigation is practised by the gravity flow method throughout all the growth stages of the rice plant. No significant difference is found between the other plots. \circled4 The number of spikelets per panicle at the various stages of rice growth at which_ surface or ground water is supplied by gravity flow method are as follows; surface water at all growth stages‥‥‥‥‥ 98.5. Ground water at all growth stages‥‥‥‥‥‥62.2 Ground water at the tillering stage‥‥‥‥‥ 82.6. Ground water at the reproductive stage ‥‥‥‥‥ 74.1. \circled5 Ripening percentage is about 70 percent on the test plot in which ground water irrigation is practised during all the growth stages and at the tillering stage only. However, when ground water irrigation is practised, at the reproductive stage, the ripening percentage is reduced to 50 percent. This means that 20 percent reduction in the ripening percentage by using ground water irrigation at the reproductive stage. \circled6 The weight of 1,000 kernels is found to show a similar tendency as in the case of ripening percentage i. e. the ground water irrigation during all the growth stages and at the reproductive stage results in a decreased weight of the 1,000 kernels. \circled7 The yield of brown rice from the various treatments are as follows; Gravity flow; Surface water at all growth stages‥‥‥‥‥‥514kg/10a. Ground water at all growth stages‥‥‥‥‥‥428kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥430kg/10a. Standing water; Surface water at all growh stages‥‥‥‥‥‥556kg/10a. Ground water at all growth stages‥‥‥‥‥‥441kg/10a. Ground water at the reproductive stage‥‥‥‥‥‥450kg/10a. The above figures show that ground water irrigation by the gravity flow and by the standing water method during all the growth stages resulted in an 18 percent and a 21 percent decrease in the yield of brown rice, respectively, when compared with surface water irrigation. Also ground water irrigation by gravity flow and by standing water resulted in respective decreases in yield of 16 percent and 19 percent, compared with the surface irrigation method. 4. Results obtained from the experiments on the improvement of ground water irrigation efficiency to paddy rice are as follows; (1) When the standing water irrigation with surface water is practised, the daily average water temperature in a paddy field is 25.2$^{\circ}C$, but, when the gravity flow method is practised with the same irrigation water, the daily average water temperature is 24.5$^{\circ}C$. This means that the former is 0.7$^{\circ}C$ higher than the latter. On the other hand, when ground water is used, the daily water temperatures in a paddy field are respectively 21.$0^{\circ}C$ and 19.3$^{\circ}C$ by practising standing water and the gravity flow method. It can be seen that the former is approximately 1.$0^{\circ}C$ higher than the latter. (2) When the non-water-logged cultivation is practised, the yield of brown rice is 516.3kg/10a, while the yield of brown rice from ground water irrigation plot throughout the whole irrigation period and surface water irrigation plot are 446.3kg/10a and 556.4kg/10a, respectivelely. This means that there is no significant difference in yields between surface water irrigation practice and non-water-logged cultivation, and also means that non-water-logged cultivation results in a 12.6 percent increase in yield compared with the yield from the ground water irrigation plot. (3) The black and white coloring on the inside surface of the water warming ponds has no substantial effect on the temperature of the water. The average daily water temperatures of the various water warming ponds, having different depths, are expressed as Y=aX+b, while the daily average water temperatures at various depths in a water warming pond are expressed as Y=a(b)x (where Y: the daily average water temperature, a,b: constants depending on the type of water warming pond, X; water depth). As the depth of water warning pond is increased, the diurnal difference of the highest and the lowest water temperature is decreased, and also, the time at which the highest water temperature occurs, is delayed. (4) The degree of warming by using a polyethylene tube, 100m in length and 10cm in diameter, is 4~9$^{\circ}C$. Heat exchange rate of a polyethylene tube is 1.5 times higher than that or a water warming channel. The following equation expresses the water warming mechanism of a polyethylene tube where distance from the tube inlet, time in day and several climatic factors are given: {{{{ theta omega (dwt)= { a}_{0 } (1-e- { x} over { PHI v })+ { 2} atop { SUM from { { n}=1} { { a}_{n } } over { SQRT { 1+ {( n omega PHI) }^{2 } } } } LEFT { sin(n omega t+ { b}_{n }+ { tan}^{-1 }n omega PHI )-e- { x} over { PHI v }sin(n omega LEFT ( t- { x} over {v } RIGHT ) + { b}_{n }+ { tan}^{-1 }n omega PHI ) RIGHT } +e- { x} over { PHI v } theta i}}}}{{{{ { theta }_{$\infty$ }(t)= { { alpha theta }_{a }+ { theta }_{ w'} +(S- { B}_{s } ) { U}_{w } } over { beta } , PHI = { { cpDU}_{ omega } } over {4 beta } }}}} where $\theta$$\omega$; discharged water temperature($^{\circ}C$) $\theta$a; air temperature ($^{\circ}C$) $\theta$$\omega$';ponded water temperature($^{\circ}C$) s ; net solar radiation(ly/min) t ; time(tadian) x; tube length(cm) D; diameter(cm) ao,an,bn;constants determined from $\theta$$\omega$(t) varitation. cp; heat capacity of water(cal/$^{\circ}C$ ㎥) U,Ua; overall heat transfer coefficient(cal/$^{\circ}C$ $\textrm{cm}^2$ min-1) $\omega$;1 velocity of water in a polyethylene tube(cm/min) Bs ; heat exchange rate between water and soil(ly/min)

  • PDF

Characteristics of Nutrient Export from Paddy Rice Fields with Irrigation Practices (관개수원에 따른 논에서의 영양물질 배출 특성)

  • Hwang, Ha-Sun;Kong, Dong Soo;Shin, Dong-Suk;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.597-602
    • /
    • 2004
  • Field experimental study was performed to examine characteristics of nutrient export from paddy rice fields with irrigation practices. Experimental fields with surface-water and ground-water irrigation were monitored and analyzed during rice culture period. The water balance showed that outflow generally balanced the inflow showing that about half (58~68%) of total outflow was lost by surface drainage. Water and nutrient export are more in surface-water irrigation paddy than in ground-water irrigation paddy. The reasons might be more irrigation water available and easy to use in surface-water irrigation. If irrigation water reduced, it could result in reduction of nutrient export in paddy rice fields, which can save water and protect water quality. However, deviation from conventional standard practices might affect the rice yield and further investigations are necessary.

A Study for Making Planting Ground and Irrigation System for Greening Artificial Ground of Planter Type (화단형태의 인공지반 녹화를 위한 식재토양조성 및 관수방안 연구)

  • Kim, Sun-Hae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.12-18
    • /
    • 2004
  • This study is to make plans for perpendicular greening with artificial ground of planter type to improve urban environment. The experiments of this study are performed to find out the suitable soil and irrigation method for artificial ground of planter greening. Thereupon, organic or inorganic soil improvement material is mixed with soil of each planter as experiment, In result, the plants in soil mixed organic soil improvement material thrive rather than that in soil mixed inorganic material, It is to be desired that the planter equip with the irrigation system, be wider than planter and be planted shrubs for positive plant growth. As for irrigation system, drip irrigation is effective on plant growth southern exposure but Ebb and Flow is effective eastern exposure. Therefore, irrigation system should consist of two types above plus keeping water on the bottom of planter to save water and store rainwater.

Development of Soil Moisture Controlling System for Smart Irrigation System (스마트 관개 시스템을 위한 토양 수분 제어시스템 개발)

  • Kim, Jongsoon;Choi, Won-Sik;Jung, Ki-Yeol;Lee, Sanghun;Park, Jong Min;Kwon, Soon Gu;Kim, Dong-Hyun;Kwon, Soon Hong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.227-234
    • /
    • 2018
  • The smart irrigation system using ICT technology is crucial for stable production of upland crops. The objective of this study was to develop a smart irrigation system that can control soil water, depending on irrigation methods, in order to improve crop production. In surface irrigation, three irrigation methods (sprinkler irrigation (SI), surface drip irrigation (SDI), and fountain irrigation (FI)) were installed on a crop field. The soil water contents were measured at 10, 20, 30, and 40 cm depth, and an automatic irrigation system controls a valve to maintain the soil water content at 10 cm to be 30%. In subsurface drip irrigation (SSDI), the drip lines were installed at a depth of 20 cm. Controlled drainage system (CDS) was managed with two ground water level (30 cm and 60 cm). The seasonal irrigation amounts were 96.4 ton/10a (SDI), 119.5 ton/10a (FI), and 113 ton/10a (SI), respectively. Since SDI system supplied water near the root zone of plants, the water was saved by 23.9% and 17.3%, compared with FI and SI, respectively. In SSDI, the mean soil water content was 38.8%, which was 10.8% higher than the value at the control treatment. In CDS, the water contents were greatly affected by the ground water level; the water contents at the surface zone with 30 cm ground water level was 9.4% higher than the values with 60 cm ground water level. In conclusion, this smart irrigation system can reduce production costs of upland crops.

Elect on Saving Water of Underground Trickle Irrigation (지중관수 방법에 의한 용수절감 효과)

  • Kim J. H.;Kim C. S.;Kim T. W.;Hong J. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.102-109
    • /
    • 2005
  • Water consumption at the farm is up to 48 percent of water resource of South Korea while manufacturing industry's is only $9.6\%$. The area of arable land is 2,077,067 ha and 27 percent of it is used for growing fruits and vegetables using furrow or surface irrigation at the greenhouse. Surface irrigation at the greenhouse for fruits and vegetables has problems such as over watering and insufficient supply of water to the fine roots of the plant. However, the research on the new method of irrigation to save water usage is few. The characteristics of soil wetting was measured for using surface irrigation and underground trickle irrigation method where water was supplied at 10, 15, 20, and 25 cm beneath the surface ground. Followings are summary of this study. 1. The efficiency of underground trickle irrigation was expected to be as high as twice of surface irrigation such as drip watering or sprinkling. 2. This improvement could be possible by using less than $50\%$ of irrigation water than surface irrigation to supply similar amount of water near fine roots. 3. Surface irrigation causes soil compaction as deep as 20 cm below the surface ground which reduces soil porosity and root respiration ending up developing less fine roots. 4. Underground trickle irrigation can prevent overdamping in the greenhouse since it does not over wet the surface soil. At winter, the amount of agricultural chemical usage could be reduced since this irrigation method does not develop blight or crop disease from condensation of water vapor.

Estimating the return flow of irrigation water for paddies (논의 농업용수 회귀수량 추정에 관한 연구)

  • 임상준;박승우;박창언
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.87-91
    • /
    • 1998
  • Unused irrigation water due to delivery losses and overflow from paddies in an irrigation system, and groundwater releases from infiltration are eventually returned to stream. The estimate of irrigation returnflow is important to streamflow modeling and water resources planning. This study was to field monitor the irrigation water use, streamflow, lateral inflow and ground water level, and to determine the return flow of irrigation water

  • PDF

Water Balance in a Paddy Field with Pumping Irrigation System (양수장 용수공급 논 지대의 물수지)

  • 정운태;이근후;이인영
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.1-7
    • /
    • 1998
  • To investigate the water balance in a paddy rice field with the pumping station for irrigation water supply, flow measurements and analysis on various components of water balance were carried out. The investigated area is 103.7 ha, and the irrigation water was supplied for 102 days during the total irrigation period starting from June 1. It was found that the consumption rate was increased as the growing stage was progressed. The variation of evapotranspiration rate was shown same tendency as the consumption rate, while no apparent tendency was found in infiltration rate upon different growing stages. And the ground water input to the area was predominant during the early stage of growing period, while ground water output from the study area was predominant at the end of the growing stage. The range of return flow rate, the ratio of total outflow to total inflow in every decad, was 57.6 to 85.7%. These values are slightly higher than reported values from the other investigation projects.

  • PDF

Security of Upland Irrigation Water through the Effective Storage Management of Irrigation Dams (관개용 댐의 효율적 저수관리를 통한 밭 관개 용수 확보)

  • Lee Joo-Yong;Kim Sun-Joo;Kim Phil-Shik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.13-23
    • /
    • 2006
  • In Korea, upland irrigation generally depends on the ground water or natural rainfall since irrigation water supplied from dams is mainly used for paddy irrigation, and only limited amount of irrigation water is supplied to the upland area. For the stable security of upland irrigation water, storage level of irrigation dams was simulated by the periods. A year was divided into 4 periods considering the irrigation characteristics. Through the periodical management of storage level, water utilization efficiency in irrigation dams could be enhanced and it makes available to secure extra available water from existing dams without new development of water resources. Two study areas, Seongju and Donghwa dam, were selected for this study. Runoff from the watersheds was simulated by the modified tank model and the irrigation water to upland crops was calculated by the Penman-Monteith method. The analyzed results showed that relatively sufficient extra available water could be secured for the main upland crops in Seongju area. In case of Donghwa area, water supply to non-irrigated upland was possible in normal years but extra water was necessary in drought years such as 1998 and 2001.

Classification of small irrigation ponds in western Civilian Control Zone in Korea (서부 민간인 통제구역에 존재하는 둠벙의 유형분류)

  • Kim, Seung-Ho;Kim, Jae-Hyun;Kim, Jae-Geun
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.275-289
    • /
    • 2011
  • We investigated the hydrological and geomorphological characteristics of small irrigation ponds in civilian control zone of Paju city in Korea. Among 85 small irrigation ponds, water level of 52 ponds changed seasonally and that of 33 was constant. Water sources of 12 ponds were surface water, 29 surface water and ground water, and 44 ground water. 4 ponds locate in the edges of forests, 33 in flat-lands, and 48 in valleys. Water in 45 ponds was exchanged with paddy fields and 40 ponds were isolated from paddy fields. Endangered or endemic species were inhabited in 26 ponds, which have ground water as water source and constant water level. Based on these characteristics, we suggested 4 types of small irrigation ponds: spring, water exchanging, stagnant/spring, stagnant water. This classification system will help ecosystem managers to investigate ponds systematically and manage them based on pond type.

Water Balance on Paddy Fields in Jedae Cheon Basin (제대천 유역 답지대의 물수지)

  • 안세영;이근후
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.3
    • /
    • pp.56-66
    • /
    • 1990
  • To investigate the status of irrigation water use and the degree of repeated use of irrigation water, observations for water balance analysis were made during the irrigation periods in 1986 and 1987 crop year. The total area of studied site is 1,441 ha. The site is a major portion of Jedaecheon basin which is located in Bubuk-myeon, Miryang-gun, Gyeongnam Province. The studied area was subdivided into six small blocks. The water balance analysis for these subdivided blocks were carried out considering characteristics of each block. Obtained results are as follow: 1.In mountainous sloppy paddy area(less than 7% slope), the surface inflow was 5A mm/day in average that is one third of the surface inflow into plain paddy area ; 16.7 mm/day. 2.The surface inflows at the vegetative stage and the ripening stage were 15.5 mm/day and 10.4 mm/day, respectively. Those figures were larger than the actual consumptive use at respective same stages ; 13.3 mm/day and 9.2 mm/day, respectively. Whereas, the surface inflow at generative stage was 12.5 mm/day which was less than 14.0 mm/day ; the actual consumptive use. 3.The range of the variation of water storage term was 1 mm/day. This means that there were no change in depth of ponded water on paddy fields. The relationship between the variation of water storage(AS) and the variation of ground water table(H) could be expressed as follow: : AS=0.14H+0.26 4.The ground water inflow: into the transition region ; paddy fields which are located continuously from the mountainous area to the plain area, was larger than the out flow from this region, in general. Rowever, in the plain region where the ground water utilization was predominant, the ground water outflow from this region was larger than inflow: to this region. The relationship between the ground water flow(G2- G1) and the consumptive use in large paddy area(D1-D2) could be expressed as follow: (G2-G1) =0.95(D1-D2) -3.79

  • PDF