• Title/Summary/Keyword: Ground-water irrigation

Search Result 103, Processing Time 0.034 seconds

Classifying Agricultural Districts for Prioritizing Groudwater Development Area based on Correlation and Cluster Analysis (가뭄 대응형 지하수 개발 우선순위 선정을 위한 농촌용수구역의 유형 분석)

  • Oh, Yun-Gyeong;Lee, Sang-Hyun;Kim, Ara;Hong, Soun-Ouk;Yoo, Seung-Hwan
    • Journal of Korean Society of Rural Planning
    • /
    • v.26 no.2
    • /
    • pp.51-59
    • /
    • 2020
  • In this study, we analyzed the characteristics of 511 agricultural districts through statistical data, and classify these districts as the vulnerable area to drought through correlation and cluster analysis. The criteria for classification was related to ground-water recharge, irrigation water demand, and water supply. As a result, 8 types of agricultural districts were extracted. For example, the type 1 indicated the high priority area for ground-water development, thus the districts which were classified as type 1 showed ground-water use was less than 80 % of maximum capacity, and irrigation water supply was only 37.5 % and 76.5 % of irrigation water demand in upland and paddy field, respectively. As a result, 44 of 511 districts were classified as type 1.36 districts (types 5-8) were areas where groundwater development is limited. The results of this study are expected to provide useful information for establishing the direction of the rural area development project in connection with the revitalization of policy of people return to rural area.

Research on the Ground Water Developement in the Region of Choong Nam Province (충남지역의 지하수개발에 관한 조사)

  • 민병섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.4
    • /
    • pp.1827-1831
    • /
    • 1969
  • Resulties of research on the capacity of ground water of 994 concrete-pipe-wells and 97 infiltration-gallerys in ground-water-developement-works region executed from March to Julyin 1969, in Choong Chung Nam Do, and research on the quality of ground water for 88 wells for home-use around of River Geum Area, are as fellows: (1) Thickness of aquifer is no more than 2.85m averagely even at river-overflowed plain, alluvial plain and valley plain area that are estimated to contain ground water mostly. And so, it is guessed that ground water capacity is not much especially. (2) Soil of aquifer of the above area is sand or gravel and it is estimated to be good for ground water developement and its mean permeability coefficient is bout $2.5{\times}10^{-3}$(m/sec), and its porosity is about 33.9%. (3) The quality of ground water is good for irrigation water exception of delta plain area. Warm water plan is to need for irrigation water when water temperature is less than 19 degrees below zero. (4) Prospect of ground water developement, judging from quality and quantity, expects to lay infiltration gallery under the ground at river bed in order to utilize under-flow-water of river bed, river-overflowed plain, alluvial plain and valley plain that ground level is less than 50m. (5) Collectable water volume of under-flow-water of river bed is about 450 to $750m^3/day$ to be able to irrigate 3ha to 5ha of the cultivated land in case that infiltration gallery length is 50m and its depth is about 5m. (6) Collectable water volume at river-overflowed plain, alluvial plain and valley plain area, is estimated $150m^3/day$ to be able to irrigated 1ha of the cultivated land.

  • PDF

Estimation of the Irrigation Return Flow of Pumped Water in the Keum River Watershed (금강유역 양수장지구의 농업용수 회귀량 산정)

  • 김영식;박정남;안병기;김태철
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.105-110
    • /
    • 1999
  • Unused irrigation water due to delievery losses and management losses. and ground water releases from infiltration in the paddy irrigation system are eventually returned to the stream. They are called as irrigation return flow. It affects the discharge of drought flow in the down strenamflow. And it may contain chemicals, and threaten streamflow quality . Thus, the accurage estimation of irrigation return flow is important to the streamflow modeling and water resources planning , and also to the control of agriculutral nonpoint source pollution . The irrigation return flow of pumped water was investigated in the Keum river watershed.

  • PDF

A Study on the Determination Method of Pumpin Rates in Tube Wells for Irrigation (관개용 관정의 가채빙량 추정에 관한 연구)

  • 구자웅;류한열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.4
    • /
    • pp.4209-4217
    • /
    • 1976
  • The purpose of this thesis is to search for the determination method of pumping rates in the existing tube wells for irrigation. Pumping tests were carried out for the twelve test tube wells which were selected in the provinces of Kyounggi, Kangwon, Chungbuk and Chungnam. The depths, static water levels, pumping levels, drawdowns and yields of tube wells were measured in the pumping tests, and a centrifugal pump with 3 inches diameter, a 5 HP motor and a 90$^{\circ}$ V-notch were used in the pumping tests. The average coefficient of transmissibility calculated by Chow's and Jacob's methods is 0.0336 square meter per second, and the average pumping rate calculated by Thiem's, Smreker's, Brinkhaus' and Theis' formulae, is 919 cubic meter per day, Therefore, the ground water storage in the test areas is comparatively abundant. Correlation between pumping rates and depths of tube wells is not in existence. Also, correlation between pumping rates and the thickness of aquifer is not found in this experiment. This shows that the depths of some tube wells are deep and their thicknesses of aquifer are thick, but their ground water storages are poor, and that the depths of some tube wells are shallow and their thicknesses of aquifer are thin, but their ground water storages are abundant. It seems that the test tube wells are influenced by the peculiar characteristics that the ground water in the test areas is free ground water in alluvium layer closely related with surface water. As drawdown increases, pumping rate decreases, and as the coefficient of transmissibility increases, pumping rate also increases. Namely, there are negative correlation between pumping rate and drawdown, and positive correlation between pumping rate and the coefficient of transmissibility. Judging from the results of the pumping tests in these tests areas, the pumping rate calculated by the formula, {{{{ { Q}_{m } =Q { ( { { S}_{ m} } over { TRIANGLE S } )}^{ { 2} over {3 } } }}}} used traditionally, is likely to be higher than real pumping rates. The formula, {{{{ { Q}_{m } =Q { { H}^{ 2} } over { (2H- TRIANGLE S) TRIANGLE S} }}}} derived from Thiem's theory, is looked upon as the reasonable one to detemine pumping rates in the existing tube wells for irrigation.

  • PDF

Survey on current Farmer's Irrigation Practice on upland in the Youngsan River Irrigation Project District IV (영산강 IV단계 사업지구 내 밭관개 실태조사)

  • Yoon, Kwang-Sik;Han, Kuk-Heon;Choi, Soo-Myung;Kim, Jin-Taek;Lee, Yong-Jik
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.287-290
    • /
    • 2003
  • To devise better development plan, survey was conducted about current Farmer's irrigation Practice on upland in the Youngsan River Irrigation Project District IV. Major upland crops are garlic and onion in this region. Currently, upland irrigation is conducted using ground water. It is found that irrigation interval is $2{\sim}3$ day for dry-field rice and $3{\sim}7$ days for other crop, in general. Whole day is required to irrigate for many farmers due to lack of facilities and water source. Farmers have no intention to change staple crops even after completion of Irrigation Project of Youngsan River District IV.

  • PDF

Microbial Risk Assessment using E. coli in UV Disinfected Wastewater Irrigation on Paddy

  • Rhee, Han-Pil;Yoon, Chun-G.;Jung, Kwang-Wook;Son, Jang-Won
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.120-125
    • /
    • 2009
  • Water stress has become a major concern in agriculture. Korea suffers from limited agricultural water supply, and wastewater reuse has been recommended as an alternative solution.A study was performed to examine the effects of microorganism concentration in the ponded-water of a paddy rice field with reclaimed-water irrigation for evaluating the microbial risk to farmers and neighborhoodchildren.Most epidemiological studies were performed based on an upland field, and they may not directly applicable to paddy fields. Beta-Poisson model was used to estimate the microbial risk of pathogen ingestion. Their risk value increased significantly high level after irrigation and precipitation.It implies that agricultural activities such as plowing, and fertilizing, and precipitation need be practiced a few days after irrigation considering health risks. The results about field application of the microbial risk assessment using E. coli showed difference according to monitoring time and treatment plot. Result of the microbial risk assessment showed that risk values of ground-water and reclaimed secondary waste water irrigation were lower than directly use of wastewater treatment plants' effluent. This paper should be viewed as a first step in the application of quantitative microbial risk assessment of E. coli to wastewater reuse in a paddy rice farming.

Water and mass balance analysis for hydrological model development in paddy fields

  • Tasuku, KATO;Satoko, OMINO;Ryota, TSUCHIYA;Satomi, TABATA
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.238-238
    • /
    • 2015
  • There are demands for water environmental analysis of discharge processes in paddy fields, however, it is not fully understood in nutrients discharge process for watershed modeling. As hydrological processes both surface and ground water and agricultural water managements are so complex in paddy fields, the development of lowland paddy fields watershed model is more difficult than upland watershed model. In this research, the improvement of SWAT (Soil and Water Assessment Tool) model for a paddy watershed was conducted. First, modification of surface inundated process was developed in improved pot hole option. Those modification was evaluated by monitoring data. Second, the monitoring data in river and drainage channel in lowland paddy fields from 2012 to 2014 were analyzed to understand discharge characteristics. As a case study, Imbanuma basin, Japan, was chosen as typical land and water use in Asian countries. In this basin, lowland paddy fields are irrigated from river water using small pumps that were located in distribution within the watershed. Daily hydrological fluctuation was too complex to estimate. Then, to understand surface and ground water discharge characteristics in irrigation (Apr-Aug) and non-irrigation (Sep-Mar) period, the water and material balance analysis was conducted. The analysis was composed two parts, watershed and river channel blocks. As results of model simulation, output was satisfactory in NSE, but uncertainty was large. It would be coming from discharge process in return water. The river water and ground water in paddy fields were exchanged each other in 5.7% and 10.8% to river discharge in irrigation and non-irrigation periods, respectively. Through this exchange, nutrient loads were exchanged between river and paddy fields components. It suggested that discharge from paddy fields was not only responded to rainfall but dynamically related with river water table. In general, hydrological models is assumed that a discharge process is one way from watershed to river. However, in lowland paddy fields, discharge process is dynamically changed. This function of paddy fields showed that flood was mitigated and temporally held as storage in ground water. Then, it showed that water quality was changed in mitigated function in the water exchange process in lowland paddy fields. In future, it was expected that hydrological models for lowland paddy fields would be developed with this mitigation function.

  • PDF

Estimation of the Change in Ground Water Level using Regression Analysis (회귀분석을 이용한 지하수 수위 변화 추정)

  • Kim, Sang-Min;Ahn, Byeong-Il
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.51-58
    • /
    • 2011
  • The objective of this study is to identify whether or not the ground water level is decreasing. We suggest a method of estimating the change in groundwater level using newly developed groundwater pumping station data. The Goseong area located in Gyeongnam province was selected considering three factors. First, this area demands relatively large amount of irrigation water because most of the land is used as a paddy field and the proportion of the paddy field within total arable land is increasing. Second, groundwater level data in nearby area are available since these are monitored by Water Management Information System (WAMIS). Third, many groundwater pumping stations have been developed in this area in order to overcome droughts thus detail information for pumping stations are available. Regression results indicate groundwater level has been decreased for over 20 years. This decreasing trend is due to the shortage of surface irrigation water which was caused by the decrease in rainfall.

Seasonal Variation of Water Quality of the Watersheds in the Agricultural Environment Promotion Zone (환경농업조성지구내 용수원 및 채수시기별 수질비교)

  • Kim, Chan-Yong;Kim, Chang-Bae;Kim, Jong-Soo;Seo, Young-Jin;Yoon, Jae-Tak
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.3
    • /
    • pp.165-171
    • /
    • 2002
  • A study was conducted to investigate the seasonal changes in water quality of watershed in the Agricultural Environment Promotion Zone. Samples collected were 12 GW (ground water), 2 IW (irrigation water), 2 SW (stream water) in An-Dong City, 4 GW, 6 IW, 11 SW in Young-Yang Gun, and sampling was conducted separately during dry and rainy season. In the ground water, EC and ionic species, except pH, were higher than those in stream water, and especially $NO_3-N$ concentration exceeded the limitation of drinking water. Concentration of ions decreased as the sampling depth was far from the soil surface. During a rainy season, the concentrations of $NO_3-N$ and K in the stream water were slightly higher than those during season. COD was lower during dry season in Yong-Yang, while the trend was contrasted to An-Dong. These results suggest that ground water was polluted by fertilization and compost while streamwater was polluted by loss of soil and organic during the rainy season. Principal chemical components related with changing water quality were EC, $NO_3^-$, Ca, Mg, Na, $Cl^-$, $Cl^-$, $SO_4^-$ in ground water, whereas $NH_4-N$, K, Mg, $Cl^-$, $SO_4^-$ in stream water.

Water and Nutrient Balance during rice cropping period using difference fertilization paddy plot in ground water irrigation region (지하수관개지역에서의 수도재배기간중 시비량의 변화에 따른 영양물질 수지 분석)

  • Hwang, Ha-Sun;Yoon, Chun-Gyeng
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.451-455
    • /
    • 2001
  • This study was performed to examine water and nutrient balance during rice cropping period using difference fertilization paddy plot in ground water irrigation region. The experimental rice paddy consist of three plot, Treatment of Excess fertilization(TEF) and Treatment of Standard Fertilization(TSF) and Treatment of Reduce Fertilization(TRF). As result, input amount to rice paddy was almost rainfall and output was direct runoff through drainage. nutrient input amount was upper paddy in case COD and fertilization in case Total nitrogen and total phosphorus, and output was drainage in all nutrient.

  • PDF