• Title/Summary/Keyword: Ground-state destabilization

Search Result 4, Processing Time 0.015 seconds

Origin of the α-Effect in Nucleophilic Substitution Reactions of Y-Substituted Phenyl Benzoates with Butane-2,3-dione Monoximate and Z-Substituted Phenoxides: Ground-State Destabilization vs. Transition-State Stabilization

  • Kim, Mi-Sun;Min, Se-Won;Seo, Jin-A;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2913-2917
    • /
    • 2009
  • Second-order rate constants (k$_{Nu–}$) have been measured for nucleophilic substitution reactions of Y-substituted phenyl benzoates (1a-i) with butane-2,3-dione monoximate ($Ox^-\;an\;\alpha$-nucleophile) and Z-substituted phenoxides in 80 mol% H$_2$O/20 mol% DMSO at 25.0${\pm}$0.1$^{\circ}C$. Hammett plots correlated with ${\sigma}^o$ and ${\sigma}^-$ constants for reactions of 1a-h with Ox$^–$ exhibit many scattered points. In contrast, the Yukawa-Tsuno plot results in a good linear correlation with ${\rho}_Y$ = 2.20 and r = 0.45, indicating that expulsion of the leaving group occurs in the rate-determining step (RDS). A stepwise mechanism with expulsion of the leaving-group being the RDS has been excluded, since Y-substituted phenoxides are less basic and better nucleofuges than Ox$^–$. Thus, the reactions have been concluded to proceed through a concerted mechanism. Ox$^–$ is over 10$^2$ times more reactive than its reference nucleophile, 4-chlorophenoxide (4-ClPhO$^–$). One might suggest that stabilization of the transition-state (TS) through intramolecular general acid/base catalysis is responsible for the ${\alpha}$-effect since such general acid/base catalysis is not possible for the corresponding reactions with 4-ClPhO$^–$. However, destabilization of the ground-state (GS) of Ox$^–$ has been concluded to be mainly responsible for the ${\alpha}$-effect found in this study on the basis of the fact that the magnitude of the ${\alpha}$-effect is independent of the nature of the substituent Y.

The α-Effect in SNAr Reaction of 1-Fluoro-2,4-dinitrobenzene with Hydrazine: Ground-State Destabilization versus Transition-State Stabilization

  • Cho, Hyo-Jin;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2371-2374
    • /
    • 2014
  • A kinetic study is reported on SNAr reaction of 1-fluoro-2,4-dinitrobenzene with a series of primary amines including hydrazine in $H_2O$ at $25.0^{\circ}C$. The plots of $k_{obsd}$ vs. [amine] are linear and pass through the origin, indicating that general-base catalysis by a second amine molecule is absent. The Br${\o}$nsted-type plot exhibits an excellent linear correlation with ${\beta}_{nuc}$ = 0.46 when hydrazine is excluded from the correlation. The reaction has been suggested to proceed through a stepwise mechanism, in which expulsion of the leaving group occurs after the rate-determining step (RDS). Hydrazine is ca. 10 times more reactive than similarly basic glycylglycine (i.e., the ${\alpha}$-effect). A five-membered cyclic intermediate has been suggested for the reaction with hydrazine, in which intramolecular H-bonding interactions would facilitate expulsion of the leaving group. However, the enhanced leaving-group ability is not responsible for the ${\alpha}$-effect shown by hydrazine because expulsion of the leaving group occurs after RDS. Destabilization of the ground-state of hydrazine through the electronic repulsion between the nonbonding electron pairs is responsible for the ${\alpha}$-effect found in the current $S_NAr$ reaction.

The α-Effect in Hydrazinolysis of 4-Chloro-2-Nitrophenyl X-Substituted-Benzoates: Effect of Substituent X on Reaction Mechanism and the α-Effect

  • Kim, Min-Young;Kim, Tae-Eun;Lee, Jieun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2271-2276
    • /
    • 2014
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reaction of 4-chloro-2-nitrophenyl X-substituted-benzoates (6a-6h) with a series of primary amines including hydrazine in 80 mol % $H_2O$/20 mol % DMSO at $25.0^{\circ}C$. The Br${\o}$nsted-type plot for the reaction of 4-chloro-2-nitrophenyl benzoate (6d) is linear with ${\beta}_{nuc}$ = 0.74 when hydrazine is excluded from the correlation. Such a linear Br${\o}$nsted-type plot is typical for reactions reported previously to proceed through a stepwise mechanism in which expulsion of the leaving group occurs in the rate-determining step (RDS). The Hammett plots for the reactions of 6a-6h with hydrazine and glycylglycine are nonlinear. In contrast, the Yukawa-Tsuno plots exhibit excellent linear correlations with ${\rho}_X$ = 1.29-1.45 and r = 0.53-0.56, indicating that the nonlinear Hammett plots are not due to a change in RDS but are caused by resonance stabilization of the substrates possessing an electron-donating group (EDG). Hydrazine is ca. 47-93 times more reactive than similarly basic glycylglycine toward 6a-6h (e.g., the ${\alpha}$-effect). The ${\alpha}$-effect increases as the substituent X in the benzoyl moiety becomes a stronger electron-withdrawing group (EWG), indicating that destabilization of the ground state (GS) of hydrazine through the repulsion between the nonbonding electron pairs on the two N atoms is not solely responsible for the substituent-dependent ${\alpha}$-effect. Stabilization of transition state (TS) through five-membered cyclic TSs, which would increase the electrophilicity of the reaction center or the nucleofugality of the leaving group, contributes to the ${\alpha}$-effect observed in this study.

Kinetic Study on Nucleophilic Displacement Reactions of 2-Chloro-4-Nitrophenyl X-Substituted-Benzoates with Primary Amines: Reaction Mechanism and Origin of the α-Effect

  • Um, Tae-Il;Kim, Min-Young;Kim, Tae-Eun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.436-440
    • /
    • 2014
  • The ${\alpha}$-Effect; Ground state; Transition state; Intramolecular H-bonding; Yukawa-Tsuno plot; Second-order rate constants for aminolysis of 2-chloro-4-nitrophenyl X-substituted-benzoates (1a-h) have been measured spectrophotometrically in 80 mol % $H_2O/20$ mol % DMSO at $25.0^{\circ}C$. The Br${\emptyset}$nsted-type plot for the reactions of 2-chloro-4-nitrophenyl benzoate (1d) with a series of primary amines curves downward, which has been taken as evidence for a stepwise mechanism with a change in rate-determining step (RDS). The Hammett plots for the reactions of 1a-h with hydrazine and glycylglycine are nonlinear while the Yukawa-Tsuno plots exhibit excellent linearity with ${\rho}_X=1.22-1.35$ and ${\gamma}= 0.57-0.59$, indicating that the nonlinear Hammett plots are not due to a change in RDS but are caused by stabilization of substrates possessing an electron-donating group (EDG) through resonance interactions between the EDG and C=O bond of the substrates. The ${\alpha}$-effect exhibited by hydrazine increases as the substituent X changes from a strong EDG to a strong electron-withdrawing group (EWG). It has been concluded that destabilization of hydrazine through the electronic repulsion between the adjacent nonbonding electrons is not solely responsible for the substituent dependent ${\alpha}$-effect but stabilization of the transition state is also a plausible origin of the ${\alpha}$-effect.