• 제목/요약/키워드: Ground-source heat pump system

검색결과 226건 처리시간 0.047초

모니터링 및 시뮬레이션을 통한 SCW형 지열 시스템의 성능인자 분석에 관한 연구 (Study on the performance analysis of SCW geothermal system by simulation and monitoring)

  • 이상준;남유진
    • 한국지열·수열에너지학회논문집
    • /
    • 제9권2호
    • /
    • pp.8-15
    • /
    • 2013
  • Recently, an interest in the use of renewable energy has been growing up due to the rise of raw material price, international oil price and depletion of fossil energy. Ground source heat pump system has a high efficiency by using the constant temperature of underground and various types of the systems have been installed and utilized in the building. there are few studies on the system performance factors in the SCW system. Furthermore, even though the performance of the system depends on the temperature of heat source, the research on their relationship is rare. In this research, in order to analyze the performance factor for the open-loop system the monitoring of the real building with the standing column well systems and the simulation with building model were conducted.

수직형 지열 열교환기(BHE)의 열성능 측정에 관한 실험적 연구 (An Experimental Study on the Thermal Performance Measurement of Vertical Borehole Heat Exchanger(BHE))

  • 임경빈;이상훈;성낙원;이창희
    • 대한기계학회논문집B
    • /
    • 제30권8호
    • /
    • pp.764-771
    • /
    • 2006
  • Knowledge of ground thermal properties is most important for the proper design of large BHE(borehole heat exchanger) systems. Thermal response tests with mobile measurement devices were first introduced in Sweden and USA in 1995. Thermal response tests have so far been used primarily for in insitu determination of design data for BHE systems, but also for evaluation of grout material, heat exchanger types and ground water effects. The main purpose has been to determine insitu values of effective ground thermal conductivity, including the effect of ground-water flow and natural convection in the boreholes. Test rig is set up on a small trailer, and contains a circulation pump, a heater, temperature sensors and a data logger for recording the temperature data. A constant heat power is injected into the borehole through the pipe system of test rig and the resulting temperature change in the borehole is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective insitu values of rock thermal conductivity and borehole thermal resistance.

개방형 지열시스템의 효율적 설계를 위한 영향인자에 대한 연구 (A Study on Significant Parameters for Efficient Design of Open-loop Groundwater Heat Pump (GWHP) Systems)

  • 박병학;전원탁;이보현;이강근
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권4호
    • /
    • pp.41-50
    • /
    • 2015
  • Open-loop groundwater heat pump (GWHP) system generally has benefits such as a higher coefficient of performance (COP), lower initial cost, and flexible system size. The hydrogeological conditions in Korea have the potential to facilitate the use of the GWHP system because a large number of monitoring wells show stable groundwater temperatures, shallow water levels, and high well yields. However, few studies have been performed in Korea regarding the GWHP system and the most studies among them dealt with Standing Column Well (SCW). Because the properties of the aquifer have an influence on designing open-loop systems, it is necessary to perform studies on various hydrogeological settings. In this study, the hydrogeological and thermal properties were estimated through various tests in the riverside alluvial layer where a GWHP system was installed. Under different groundwater flow velocities and pumping and injection rates, a sensitivity analysis was performed to evaluate the effect of such properties on the design of open-loop systems. The results showed that hydraulic conductivity and thermal dispersivity of the aquifer are the most sensitive parameters in terms of performance and environmental aspects, and sensitivities of the properties depend on conditions.

스탠딩컬럼웰형(SCW) 지중열교환기의 열성능 측정에 관한 실험적 연구 (An Experimental Study on the Thermal Performance Measurement of Standing Column Well type Borehole Heat Exchanger)

  • 이상훈;최용석;안근묵
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.122.2-122.2
    • /
    • 2010
  • Knowledge of ground thermal properties is most important for the proper design of BHE(borehole heat exchanger) systems. The configure type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for in-situ determination of design data for Standing Column Well apply. The main purpose has been to determine in-situ values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a sub-circulation pump, a boiler, temperature sensors, flow meter and a data logger for recording the temperature and circulation fluid flow data. A constant heating power is injected into the SCW through the test rig and the resulting temperature change in the SCW is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective in-situ values of rock thermal conductivity and thermal resistance of SCW.

  • PDF

설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

지중열전달특성 평가에 관한 해석 및 실험적 방법에 관한 연구 - 지중 열물성치 및 보어 홀 열 저항 평가 - (Study on Analytical and Empirical Methods for Assessing Geo-Heat Transfer Characteristics)

  • 박준언;백남춘
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.427-432
    • /
    • 2005
  • This study treats the advantage of in situ line source method measuring the heat transfer capacity of a borehole, using mobile equipment, to determine the thermal properties of the entire borehole system such as thermal conductivity, diffusiveity. volumetric heat capacity, and borehole thermal resistance. The results from the response test include not only the thermal properties of the ground and the borehole, but also conditions that are difficult to estimate, e,g. natural convection in the boreholes, asymmetry in the construction, etc. In this study, 1) theoretical in situ methods for assessing working fluid temperature variation in V-type PE tube have been introduced, and 2) TRTE(Thermal Response Test Equipment) has been built based on these kinds of theoretical in situ methods. Basically TRTE consists of a pump, a heater and temperature sensors for measuring the inlet and outlet temperatures of the borehole. In order to make equipment easily transportable it is set up on a small trailer. Since the response test takes above two days to execute, the test was fully automatic in recording measured data using Labview DAS(Data acquisition system) program. The test was demonstrated in the course of intensive research in this field through the one site at Ulsan city in Korea. From this kind of thermal properties test of borehole systems in situ, the design of the borehole system can be optimized regarding the total geological, hydro-geological and technical conditions at the location.

  • PDF

재생열에너지 경제성 분석: 균등화열생산비용(LCOH) (Economic Analysis of Renewable Heat Energy: Levelized Cost of Heat (LCOH))

  • 이재석;조일현
    • 신재생에너지
    • /
    • 제20권1호
    • /
    • pp.52-60
    • /
    • 2024
  • This study conducted an economic analysis of renewable heat energy by estimating the levelized cost of heat production (LCOH) of ST and GSHP and comparing it with the cost of alternative fuels. The LCOH of ST ranged from 396.8 KRW/kWh to 578.7 KRW/kWh (small-scale), 270.3 KRW/kWh to 393.3 KRW/kWh (large-scale), and 156.3 KRW/kWh to 220.7 KRW/kWh for GSHP. The economic feasibility of ST and GSHP was analyzed by comparing the calculated LCOH and the fuel costs such as gas and kerosene prices. Moreover, scenario analyses were conducted for installation subsidies under the current system to examine the changes in the economics of renewable thermal energy.

지중 열교환 시스템을 위한 열-수리 파이프 요소의 개발 (Development of Thermal-Hydro Pipe Element for Ground Heat Exchange System)

  • 신호성;이승래
    • 한국지반공학회논문집
    • /
    • 제29권8호
    • /
    • pp.65-73
    • /
    • 2013
  • 지중 열교환 시스템은 지속적인 에너지 효율의 개선으로 공간 냉난방을 위한 친환경적 에너지 기술로 주목받고 있다. 지중에 매설된 파이프는 내부 유체 순환을 통하여 인접한 지반과 열적 상호작용으로부터 직접적인 열에너지 교환을 수행한다. 하지만, 파이프의 수치모델링에서 열-수리가 연관된 난류해석과 파이프의 긴 세장비에 의한 메쉬사이즈의 부적합성은 열교환 시스템의 적절한 수치해석을 어렵게 하고 있다. 본 논문에서는 파이프 내부 유체흐름에 대한 에너지 보존의 법칙을 적용하여 지배방정식을 유도하였으며, Galerkin수식화와 시간적분을 통하여 열-수리 연동일차원 파이프 요소를 개발하였다. 그리고 제안된 파이프 요소를 기 개발된 다공질 재료를 위한 열-수리-역학(Thermo-Hydro-Mechanical) 해석을 위한 유한요소 프로그램과 결합하였다. 개발된 요소를 이용한 수치해석 결과는 열응답 시험(Thermal Response Test) 결과로부터 주위지반의 유효 열전도도를 평가하기 위하여 사용하는 선형 열원 모델이 인접 파이프간의 열적상호작용과 파이프의 단부효과에 의하여 지반의 열전도도를 과다 평가하는 것으로 보여주었다. 따라서 열응답 시험 해석 결과에 대한 역해석을 적용하여 최적의 수렴성을 보여주는 변환행렬을 제시하였다.