• Title/Summary/Keyword: Ground-detection sensor

Search Result 109, Processing Time 0.024 seconds

A Study on the Ground Following and Location Marking Method for Mine Detection System (지뢰 탐지를 위한 지면추종 및 탐지위치 표식에 관한 연구)

  • Lee, Myung-Chun;Shin, Ho-Cheol;Yoon, Jong-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1002-1008
    • /
    • 2011
  • The mine-detection system, which is one of the various mission equipments for Ground Vehicle System, detects mine under the ground. The mine detection sensors comprised of Metal Detection(MD) sensor and Ground Penetration Radar(GPR) are attached on the end of the multi-DOF manipulator. The manipulator moves the sensor to sweep mine areas keeping the pre-determined distance between the sensor and ground to enhance mine detection performance. The detection system can be operated automatically, semi-automatically and manually. When the detection system is operated automatically, the sensor should avoid collisions with unexpected obstacles which may exist on the ground. Two types of ultra-sonic sensors were developed for the mine detection sensor system to keep the appropriate gap between sensor and the ground to avoid the obstacles. Also, mine place marking device was developed.

Miniaturized Ground-Detection Sensor using a Geomagnetic Sensor for an Air-burst Munition Fuze (공중폭발탄용 신관에 적용 가능한 초소형 지자기 지면감지 센서)

  • LEE, HanJin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.5
    • /
    • pp.97-105
    • /
    • 2017
  • An air-burst munition is limited in space, so there is a limit on the size of the fuze and the amount of ammunition. In order to increase a firepower to a target with limited ammunition, it is necessary to concentrate the firepower on the ground instead of the omnidirectional explosion after flying to the target. This paper explores the design and verification of a ground-detection sensor that detects the direction of the ground and determines the flight-distance of an air-burst munition using a single axis geomagnetic sensor. Prior to the design of the ground detection sensor, a geomagnetic sensor model mounted on the spinning air-burst munition is analyzed and a ground-detection algorithm by simplifying this model is designed. A high speed rotating device to simulate a rotation environment is designed and a geomagnetic sensor and a remote-recording system are fabricated to obtain geomagnetic data. The ground detection algorithm is verified by post-processing the acquired geomagnetic data. Taking miniaturization and low-power into consideration, the ground detection sensor is implemented with analog devices and the processor. The output signal of the ground detection sensor rotating at an arbitrary rotation speed of 200 Hz is connected to the LED (Light Emitting Diode) in the high speed rotating device and the ground detection sensor is verified using a high-speed camera.

A Study on the Effective Scanning Trajectory using Manipulator for Underground Object Detection (매니퓰레이터를 이용한 지하 매설물 탐지의 효율적 탐지경로에 관한 연구)

  • Lee, Myung-Chun;Shin, Ho-Cheol;Yoon, Jong-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • This paper shows an effective scanning trajectory for a mine detection device that is one of the mission equipments of unmanned ground vehicle. The mine detection device is composed of a mine-detection sensor, and a 4 DOF manipulator enabling sensor position control. There are three modes that manage the mine detection device: passive, semi-automatic, and automatic. The automatic mode is used the most. This paper suggests a scanning method that makes shape of 8. This method prevents missing target area and enhances scanning speed when the mine detection device scans the ground surface in automatic mode. The suggested method is verified by simulations and experiments.

Development of a Contact Type Height Sensor to Measure Ground Clearance of an Agricultural Tractor (농용 트랙터용 접촉식 지상고 측정 센서 개발)

  • Lee, Choong-Ho;Lee, Je-Yong;Lee, Sang-Sik
    • Journal of Biosystems Engineering
    • /
    • v.33 no.1
    • /
    • pp.7-13
    • /
    • 2008
  • The tillage depth control system is one of the most salient control system of tractor implements. A contact-type height sensor was developed to measure ground clearance for the tillage depth control. The height sensor was fabricated in this study, and its efficacy in a tillage depth control system was evaluated. Experiments were conducted in order to determine both static and dynamic detection characteristics of the height sensor using soil bin system on the sampled soil (sandy loam, sand, clay loam). The results of the static detection characteristics showed that in the case, sandy loam soil despite and clay loam soil at a wet basis moisture content of 30%, large measurement errors were observed a due to penetration of a plastic puck into the sampled soil. The results of the dynamic detection characteristics showed that the height sensor detected the distance from the ground of sandy loam soil despite the uneven nature of the ground surface and the changes in traveling speed $1km/h{\sim}5km/h$ at a wet basis moisture content of 10%.

STUDY ON A CONTACT TYPE SENSOR FOR DETECTING HEIGHT FROM GROUND SURFACE

  • J. K. Ha;Lee, J. Y.;Park, Y. M.;Kim, T. S.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.178-187
    • /
    • 2000
  • The tillage operation by rotary implements is widely done in Korea. In the case of rotary implements, the tillage depth control system is one of important implement control systems. A contact type-sensor for measurement of the ground height was designed and fabricated to evaluate the possibility of application of the sensor on the tillage depth control system. Indoor experiments were conducted to obtain static and dynamic detection characteristics of the sensor under various conditions; 1) several moisture contents for four soil samples, 2) two soil surfaces with a designed configuration, 3) four heights of the sensor from the soil surface, 4) five traveling speeds of the carrier on which the sensor was attached, and so on. The experimental results showed the detection characteristics of the sensor sufficient as the ground height sensor of the tillage depth control system.

  • PDF

The study on configuration method for the vehicle-based train position detection (차상기반 열차위치검지방식의 구성방안 연구)

  • Shin, Kyung-Ho;Jung, Eui-Jin;Kim, Jong-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.238-240
    • /
    • 2006
  • For the method of train position detection, ground-based train position estimation mainly has been applied so far. Ground-based position detection is the way to detect train current positions by installing train position equipments on railroad lines. However, the ground-based methods should install detection equipments on each section, and can only be able to detect train positions from main command center. So this method has several disadvantages such as an discontinuous position detection, an increment in cost of installation and maintenance. To make possible continuous train position detection, and to minimize amount of the cost, the vehicle-based position detection method should be chosen to determine train positions by loading position equipments on vehicles. In this paper, to realize the vehicle-based train position detection method, configuration scheme of train position detection equipment is suggested by using GPS, inertial sensor, speed sensor and its performance is verified by simulations.

  • PDF

Ground Detection Method for Removement of Earth Field for Magnetic Guidance System (자계안내시스템용 지자계 제거를 위한 Ground 검출법)

  • Im, Dae-Yeong;Jung, Young-Yoon;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.581-586
    • /
    • 2006
  • In this paper, describes ground detection method for removal earth field of magnet guidance system Magnetic guidance system is magnetic markers are installed just under the surface of roadway pavement and the magnetic fields generated these markers are detected by magnetic field sensor mounted of vehicles. vehicle is know lot lateral distance using magnetic field. But sensor is together measuring the magnetic field and earth field. It is operate error. Thus in this paper, proposed new method removing earth field or development experiment device via show the for practical and excellence.

A Method of Obstacle Detection in the Dust Environment for Unmanned Ground Vehicle (먼지 환경의 무인차량 운용을 위한 장애물 탐지 기법)

  • Choe, Tok-Son;Ahn, Seong-Yong;Park, Yong-Woon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1006-1012
    • /
    • 2010
  • For the autonomous navigation of an unmanned ground vehicle in the rough terrain and combat, the dust environment should necessarily be overcome. Therefore, we propose a robust obstacle detection methodology using laser range sensor and radar. Laser range sensor has a good angle and distance accuracy, however, it has a weakness in the dust environment. On the other hand, radar has not better the angle and distance accuracy than laser range sensor, it has a robustness in the dust environment. Using these characteristics of laser range sensor and radar, we use laser range sensor as a main sensor for normal times and radar as a assist sensor for the dust environment. For fusion of laser range sensor and radar information, the angle and distance data of the laser range sensor and radar are separately transformed to the angle and distance data of virtual range sensor which is located in the center of the vehicle. Through distance comparison of laser range sensor and radar in the same angle, the distance data of a fused virtual range sensor are changed to the distance data of the laser range sensor, if the distance of laser range sensor and radar are similar. In the other case, the distance data of the fused virtual range sensor are changed to the distance data of the radar. The suggested methodology is verified by real experiment.

An Efficient Intruder Detection using the Seismic Sensor (진동센서를 이용한 효율적인 침입자 탐지 기법)

  • Kim, Yong-Hyun;Chung, Kwang-Sue
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1129-1137
    • /
    • 2011
  • This paper reports on a design of the footstep signal detection system using the seismic sensor. First, we analyzed the characteristics of seismic signal, seismic sensor, and the UGS(Unattended Ground Sensor) system with seismic sensors. In addition, we summarized the existing algorithms to detect footstep using the seismic sensors, and developed our low-power and high efficient footstep detection algorithm. In this paper, the sensor node operations are classified into three different steps and different resources and algorithms are applied to each step, not only to minimize the power consumption, but also to improve the performance.