• Title/Summary/Keyword: Ground-based radar

Search Result 225, Processing Time 0.022 seconds

Estimation of Soybean Growth Using Polarimetric Discrimination Ratio by Radar Scatterometer (레이더 산란계 편파 차이율을 이용한 콩 생육 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.878-886
    • /
    • 2011
  • The soybean is one of the oldest cultivated crops in the world. Microwave remote sensing is an important tool because it can penetrate into cloud independent of weather and it can acquire day or night time data. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. In this study, soybean growth parameters and soil moisture were estimated using polarimetric discrimination ratio (PDR) by radar scatterometer. A ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the soybean growth condition and soil moisture change. It was set up to obtain data automatically every 10 minutes. The temporal trend of the PDR for all bands agreed with the soybean growth data such as fresh weight, Leaf Area Index, Vegetation Water Content, plant height; i.e., increased until about DOY 271 and decreased afterward. Soil moisture lowly related with PDR in all bands during whole growth stage. In contrast, PDR is relative correlated with soil moisture during below LAI 2. We also analyzed the relationship between the PDR of each band and growth data. It was found that L-band PDR is the most correlated with fresh weight (r=0.96), LAI (r=0.91), vegetation water content (r=0.94) and soil moisture (r=0.86). In addition, the relationship between C-, X-band PDR and growth data were moderately correlated ($r{\geq}0.83$) with the exception of the soil moisture. Based on the analysis of the relation between the PDR at L, C, X-band and soybean growth parameters, we predicted the growth parameters and soil moisture using L-band PDR. Overall good agreement has been observed between retrieved growth data and observed growth data. Results from this study show that PDR appear effective to estimate soybean growth parameters and soil moisture.

Ship Detection by Satellite Data: Radiometric and Geometric Calibrations of RADARS AT Data (위성 데이터에 의한 선박 탐지: RADARSAT의 대기보정과 기하보정)

  • Yang, Chan-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.1 s.20
    • /
    • pp.1-7
    • /
    • 2004
  • RADARSAT is one of many possible data sources that can play an important role in marine surveillance including ship detection because radar sensors have the two primary advantages: all-weather and day or night imaging. However, atmospheric effects on SAR imaging can not be bypassed and any remote sensing image has various geometric distortions, In this study, radiometric and geometric calibrations for RADARSAT/SAT data are tried using SGX products georeferenced as level 1. Even comparison of the near vs. far range sections of the same images requires such calibration Radiometric calibration is performed by compensating for effects of local illuminated area and incidence angle on the local backscatter, Conversion method of the pixel DNs to beta nought and sigma nought is also investigated. Finally, automatic geometric calibration based on the 4 pixels from the header file is compared to a marine chart. The errors for latitude and longitude directions are 300m and 260m, respectively. It can be concluded that the error extent is acceptable for an application to open sea and can be calibrated using a ground control point.

  • PDF

Areal average rainfall estimation method using multiple elevation data of an electromagnetic wave rain gauge (전파강수계의 다중 고도각 자료를 이용한 면적 평균 강우 추정 기법)

  • Lim, Sanghun;Choi, Jeongho;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.417-425
    • /
    • 2020
  • In order to predict and prevent hydrological disasters such as flood, it is necessary to accurately estimate rainfall. In this paper, an areal average rainfall estimation method using multiple elevation observation data of an electromagnetic wave rain gauge is presented. The small electromagnetic rain gauge system is a very small precipitation radar that operates at K-band with dual-polarization technology for very short distance observation. The areal average rainfall estimation method is based on the assumption that the variation in rainfall over the observation range is small because the observation distance and time are very short. The proposed method has been evaluated by comparing with ground instruments such as tipping-bucket rain gauges and a Parsivel. The evaluation results show that the methodology works fairly well for the rainfall events which are shown here.

Landmine Detection System using a Target-adaptive Window Selection Method (표적 적응형 윈도우 기법을 적용한 지뢰 탐지 시스템)

  • Kim, Min Ju;Kim, Seong-Dae;Paeng, Kyunghyun;Hahm, Jong-Hun;Han, Seung-Hoon;Lee, Seung-Eui
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.201-208
    • /
    • 2014
  • The performance of a landmine detection system depends on consistent extractions of the features of landmines. Since landmines have diverse sizes, it is critical to select an appropriate window size to represent the landmine region consistently. Conventional detection systems are incapable of extracting consistent landmine features because they employ fixed window sizes. This paper proposes a window size selection method according to the size of a landmine. The proposed method selects an appropriate window size based on the type of a landmine estimated from the response signal of the system. Data on various types of soils and landmines were generated from a simulation program to evaluate the performance of the proposed method. The results verified that the proposed method, which employs an adaptive window size, yields a better landmine detection rate than the conventional methods, which employ fixed window sizes.

Development of a GB-SAR (II) : Focusing Algorithms (GB-SAR의 개발 (II) : 영상화 기법)

  • Lee, Hoon-Yol;Sung, Nak-Hoon;Kim, Jung-Ho;Cho, Seong-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.247-256
    • /
    • 2007
  • In this paper we introduced GB-SAR focusing algorithms for image formation and suggested an optimized solution. We compared the characteristics, advantages, and limitations of the Deramp-FFT (DF) algorithm and the Range-Doppler (RD) algorithm in terms of their image formation principles, memory usage and processing time. We found that DF algorithm is efficient in memory and processing time but can not focus the near range. The RD algorithm can focus the entire range but, considering the refinement on the rail length, it has much redundancy in memory and processing time. In conclusion, we optimized the GB-SAR focusing by using the DF algorithm for a far-range case and the RD algorithm for a near-range case separately.

GPR Analysis on Underground Features and Foundation Structure of Cheomseongdae, Gyeongju (GPR 탐사를 통해 본 경주 첨성대 기초 및 주변의 유구 분석)

  • Oh, Hyundok;Kwon, Moonhee;Jang, Hangilro
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.4
    • /
    • pp.264-271
    • /
    • 2019
  • Cheomseongdae in Gyeongju, known as an astronomical observatory, is a cultural monument with great historical, academic, and artistic value, as its unique shape is preserved well in its original form. The outer structure, ground stability, and seismic reliability of Cheomseongdae have been assessed by numerous researchers through various scientific methods, but research on the underground structure has been insufficient. This paper contains detailed models of the underground structure of Cheomseongdae interpreted in 2D and 3D images based on the data acquired through GPR surveys conducted of features in and around the base of Cheomseongdae. As a result, the existence of twelve small features arranged in a circle, although only about half of them remain, was confirmed at a depth of 0.4 - 0.6m. Furthermore, a structure three bays long (north-south direction) and four bays wide (east-west direction) was detected beneath Cheomseongdae at the depth of 0.7 - 1.0m. Other than 2 layers of foundations as is known, a square structure with the dimensions of 7m × 7m is situated at a depth of 0.6m, directly under Cheomseongdae, and what is reading that is expected to be the foundation structure of Cheomseongdae was detected and confirmed. This foundation structure is circular with a diameter in the east-west direction of 11m and in the north-south direction of 12m. The northern, western, and eastern edges of this foundation structure are about 1m away from the foundation of Cheomseongdae, whereas the the south side extends to about 5m wide.

A Study on the Types of Crime and Scalability in Metaverse (메타버스 내 범죄발생 유형과 확장성에 관한 연구)

  • Song, HyeJin;Nam, Wanwoo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.218-227
    • /
    • 2022
  • Purpose: In the case of cavity discovered by ground penetrating radar exploration, it is necessary to accurately predict the filling amount in the cavity in advance, fill the cavity sufficiently and exert strength to ensure stability and prevent ground subsidence. Method: The cavity waveform analysis method by GPR exploration and the method using the cavity shape imaging equipment were performed to measure the cavity shape with irregular size and shape of the actual cavity, and the amount of cavity filling of the injection material was calculated during rapid restoration. Result: The expected filling amount was presented by analyzing the correlation between the cavity size and the filling amount of injection material according to the cavity scale and soil depth through the method by GPR exploration and the cavity scale calculation using the cavity shaping equipment. Conclusion: The cavity scale measured by the cavity imaging equipment was found to be in the range of 20% to 40% of the cavity scale by GPR exploration. In addition, the filling amount of injection material compared to the cavity scale predicted by GPR exploration was in the range of about 60% to 140%, and the filling amount of the injection material compared to the cavity size by the cavity shaping equipment was confirmed to be about 260% to 320 Purpose: The purpose of this study is to examine the types of crimes taking place in the metaverse, and to establish a crime prevention strategy and find a legal deterrent against it. Method: In order to classify crime types in the metaverse, crime types were analyzed based on the results of previous studies and current incidents. Result: Most of the crimes taking place in the metaverse are done in games such as Roblox or Zeppetto. Most of the game users were teenagers. Looking at the types, there are many teens for sexual crimes, violent crimes, and defamation, but professional criminals are often included in copyright infringement, money laundering using virtual currency, and fraud. Conclusion: Since the types of crimes in the metaverse are diverse, various institutional supplementary mechanisms such as establishment of police crime prevention strategies, legal regulations, and law revisions will have to be prepared.

Downscaling GPM Precipitation Using Finer-scale MODIS Based Optical Image in Korean Peninsula (MODIS 광학 영상 자료를 통한 한반도 GPM 강우 자료의 상세화 기법)

  • Oh, Seungcheol;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.749-762
    • /
    • 2020
  • Precipitation is closely related to various hydrometeorological phenomena, such as runoff and evapotranspiration. In Korean Peninsula, observing rainfall intensity using weather radar and rain gauge network is dominating due to their accurate, intuitive and precise detecting power. However,since these methods are not suitable at ungauged regions, rainfall detection using satellite is required. Satellite-based rainfall data has coarse spatial resolution (10 km, 25 km), and has a limited range of usage due to its reliability of data. The aim of this study is to obtain finer scale precipitation. Especially, to make the applicability of satellite higher at ungauged regions, 10 km satellite-based rainfall data was downscaled to 1 km data using MODerate Resolution Imaging Spectroradiometer (MODIS) based cloud property. Downscaled precipitation was verified in urban region, which has complex topographical and environmental characteristics. Correlation coefficient was similar in summer (+0), decreased in spring (-0.08) and autumn (-0.01), and increased in winter (+0.04) season compared to Global Precipitation Measurement (GPM) based precipitation. Downscaling without calibration using in situ data could be useful in areas where rain gauge system is not sufficient or ground observations are rarely available.

Construction of X-band automatic radar scatterometer measurement system and monitoring of rice growth (X-밴드 레이더 산란계 자동 측정시스템 구축과 벼 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.374-383
    • /
    • 2010
  • Microwave radar can penetrate cloud cover regardless of weather conditions and can be used day and night. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. Kim et al. (2009) have measured backscattering coefficients of paddy rice using L-, C-, X-band scatterometer system with full polarization and various angles during the rice growth period and have revealed the necessity of near-continuous automatic measurement to eliminate the difficulties, inaccuracy and sparseness of data acquisitions arising from manual operation of the system. In this study, we constructed an X-band automatic scatterometer system, analyzed scattering characteristics of paddy rice from X-band scatterometer data and estimated rice growth parameter using backscattering coefficients in X-band. The system was installed inside a shelter in an experimental paddy field at the National Academy of Agricultural Science (NAAS) before rice transplanting. The scatterometer system consists of X-band antennas, HP8720D vector network analyzer, RF cables and personal computer that controls frequency, polarization and data storage. This system using automatically measures fully-polarimetric backscattering coefficients of rice crop every 10 minutes. The backscattering coefficients were calculated from the measured data at a fixed incidence angle of $45^{\circ}$ and with full polarization (HH, VV, HV, VH) by applying the radar equation and compared with rice growth data such as plant height, stem number, fresh dry weight and Leaf Area Index (LAI) that were collected at the same time of each rice growth parameter. We examined the temporal behaviour of the backscattering coefficients of the rice crop at X-band during rice growth period. The HH-, VV-polarization backscattering coefficients steadily increased toward panicle initiation stage, thereafter decreased and again increased in early-September. We analyzed the relationships between backscattering coefficients in X-band and plant parameters and predicted the rice growth parameters using backscattering coefficients. It was confirmed that X-band is sensitive to grain maturity at near harvesting season.

Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement system (L, C, X-밴드 레이더 산란계 자동측정시스템을 이용한 콩 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol;Lee, Jae-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.191-201
    • /
    • 2011
  • Soybean has widely grown for its edible bean which has numerous uses. Microwave remote sensing has a great potential over the conventional remote sensing with the visible and infrared spectra due to its all-weather day-and-night imaging capabilities. In this investigation, a ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the crop conditions of a soybean field. Polarimetric backscatter data at L, C, and X-bands were acquired every 10 minutes on the microwave observations at various soybean stages. The polarimetric scatterometer consists of a vector network analyzer, a microwave switch, radio frequency cables, power unit and a personal computer. The polarimetric scatterometer components were installed inside an air-conditioned shelter to maintain constant temperature and humidity during the data acquisition period. The backscattering coefficients were calculated from the measured data at incidence angle $40^{\circ}$ and full polarization (HH, VV, HV, VH) by applying the radar equation. The soybean growth data such as leaf area index (LAI), plant height, fresh and dry weight, vegetation water content and pod weight were measured periodically throughout the growth season. We measured the temporal variations of backscattering coefficients of the soybean crop at L, C, and X-bands during a soybean growth period. In the three bands, VV-polarized backscattering coefficients were higher than HH-polarized backscattering coefficients until mid-June, and thereafter HH-polarized backscattering coefficients were higher than VV-, HV-polarized back scattering coefficients. However, the cross-over stage (HH > VV) was different for each frequency: DOY 200 for L-band and DOY 210 for both C and X-bands. The temporal trend of the backscattering coefficients for all bands agreed with the soybean growth data such as LAI, dry weight and plant height; i.e., increased until about DOY 271 and decreased afterward. We plotted the relationship between the backscattering coefficients with three bands and soybean growth parameters. The growth parameters were highly correlated with HH-polarization at L-band (over r=0.92).