• Title/Summary/Keyword: Ground-Building Method

Search Result 504, Processing Time 0.027 seconds

Sensitivity analysis of probabilistic seismic behaviour of wood frame buildings

  • Gu, Jianzhong
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.109-127
    • /
    • 2016
  • This paper examines the contribution of three sources of uncertainties to probabilistic seismic behaviour of wood frame buildings, including ground motions, intensity and seismic mass. This sensitivity analysis is performed using three methods, including the traditional method based on the conditional distributions of ground motions at given intensity measures, a method using the summation of conditional distributions at given ground motion records, and the Monte Carlo simulation. FEMA P-695 ground motions and its scaling methods are used in the analysis. Two archetype buildings are used in the sensitivity analysis, including a two-storey building and a four-storey building. The results of these analyses indicate that using data-fitting techniques to obtain probability distributions may cause some errors. Linear interpolation combined with data-fitting technique may be employed to improve the accuracy of the calculated exceeding probability. The procedures can be used to quantify the risk of wood frame buildings in seismic events and to calibrate seismic design provisions towards design code improvement.

Dynamic Analysis of AP1000 Shield Building Considering Fluid and Structure Interaction Effects

  • Xu, Qiang;Chen, Jianyun;Zhang, Chaobi;Li, Jing;Zhao, Chunfeng
    • Nuclear Engineering and Technology
    • /
    • v.48 no.1
    • /
    • pp.246-258
    • /
    • 2016
  • The shield building of AP1000 was designed to protect the steel containment vessel of the nuclear reactor. Therefore, the safety and integrity must be ensured during the plant life in any conditions such as an earthquake. The aim of this paper is to study the effect of water in the water tank on the response of the AP1000 shield building when subjected to three-dimensional seismic ground acceleration. The smoothed particle hydrodynamics method (SPH) and finite element method (FEM) coupling method is used to numerically simulate the fluid and structure interaction (FSI) between water in the water tank and the AP1000 shield building. Then the grid convergence of FEM and SPH for the AP1000 shield building is analyzed. Next the modal analysis of the AP1000 shield building with various water levels (WLs) in the water tank is taken. Meanwhile, the pressure due to sloshing and oscillation of the water in the gravity drain water tank is studied. The influences of the height of water in the water tank on the time history of acceleration of the AP1000 shield building are discussed, as well as the distributions of amplification, acceleration, displacement, and stresses of the AP1000 shield building. Research on the relationship between the WLs in the water tank and the response spectrums of the structure are also taken. The results show that the high WL in the water tank can limit the vibration of the AP1000 shield building and can more efficiently dissipate the kinetic energy of the AP1000 shield building by fluid-structure interaction.

A Experimental Study on the Complex Waterproofing Method of Exposure using PE Textiles of Mesh type and Highly Viscous Urethane (망사형 PE직물과 고점도 우레탄을 이용한 복층형 노출 방수공법에 관한연구)

  • Shao, Xu-Dong;Song, Je-Young;Kim, Young-Suk;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.127-130
    • /
    • 2011
  • The duplex waterproofing construction method has been investigated to improve various problems (how to fix the sheet, breaking, air/water pocket, and cracks caused by different materials) of the existing rooftop exposed waterproofing construction method. By using fiber sheet, Net PE fabric, and thixotropy urethane with high viscosity, the waterproofing construction method is to glue the ground and waterproof course by circular dot. The method is also to construct the waterproof course with high hardness by using waterproof membrane coatings in upper hybrid system. By gluing the ground and the waterproof course by circular dot, the study is expected to be useful to minimize the simultaneous breaking in the waterproof course as tensile stress is buffer in case of the ground crackling. Also, since the waterproofing construction method is good at moving and emitting vapor from the ground, it is considered to be effective to minimize any damages caused by air/water pocket and get loose of the waterproof course.

  • PDF

Automatic Building Modeling Method Using Planar Analysis of Point Clouds from Unmanned Aerial Vehicles (무인항공기에서 생성된 포인트 클라우드의 평면성 분석을 통한 자동 건물 모델 생성 기법)

  • Kim, Han-gyeol;Hwang, YunHyuk;Rhee, Sooahm
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.973-985
    • /
    • 2019
  • In this paper, we propose a method to separate the ground and building areas and generate building models automatically through planarity analysis using UAV (Unmanned Aerial Vehicle) based point cloud. In this study, proposed method includes five steps. In the first step, the planes of the point cloud were extracted by analyzing the planarity of the input point cloud. In the second step, the extracted planes were analyzed to find a plane corresponding to the ground surface. Then, the points corresponding to the plane were removed from the point cloud. In the third step, we generate ortho-projected image from the point cloud ground surface removed. In the fourth step, the outline of each object was extracted from the ortho-projected image. Then, the non-building area was removed using the area, area / length ratio. Finally, the building's outer points were constructed using the building's ground height and the building's height. Then, 3D building models were created. In order to verify the proposed method, we used point clouds made using the UAV images. Through experiments, we confirmed that the 3D models of the building were generated automatically.

A Case Study on the Effect of Soil Improvement on Anchor Bond Zone (지반개량에 의한 Anchor 정착부 개선효과 사례연구)

  • Kim, Tae-Seob;Song, Sang-Ho;Cho, Kyu-Wan;Lee, Jae-Dong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1008-1013
    • /
    • 2006
  • Ground anchor method is widely used in the large scale deep excavation of urban area to support a retained wall. Excavation using the ground anchor as a supporting system near a building have many difficulties due to the limitation of construction space. This method can not be applied to the site with the insufficient space from the retained wall to the boundary line. In this case, soil improvement at the anchor bond zone can be used to secure the frictional resistance of ground anchor within the boundary. Through this method, the bond length of anchor can be shortened considerably. This paper deals with the case study on the ground excavation adjacent to a building. The object field is Yongsan Park Tower Construction Site. In this site, the enlarged anchor with soil improvement was applied to solve the problem due to the limitation of construction space. According to the results of field test and monitoring, the anchor with soil improvement is very effective to secure the frictional resistance at the anchor bond zone.

  • PDF

Probabilistic seismic performance evaluation of non-seismic RC frame buildings

  • Maniyar, M.M.;Khare, R.K.;Dhakal, R.P.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.725-745
    • /
    • 2009
  • In this paper, probabilistic seismic performance assessment of a typical non-seismic RC frame building representative of a large inventory of existing buildings in developing countries is conducted. Nonlinear time-history analyses of the sample building are performed with 20 large-magnitude medium distance ground motions scaled to different levels of intensity represented by peak ground acceleration and 5% damped elastic spectral acceleration at the first mode period of the building. The hysteretic model used in the analyses accommodates stiffness degradation, ductility-based strength decay, hysteretic energy-based strength decay and pinching due to gap opening and closing. The maximum inter story drift ratios obtained from the time-history analyses are plotted against the ground motion intensities. A method is defined for obtaining the yielding and collapse capacity of the analyzed structure using these curves. The fragility curves for yielding and collapse damage levels are developed by statistically interpreting the results of the time-history analyses. Hazard-survival curves are generated by changing the horizontal axis of the fragility curves from ground motion intensities to their annual probability of exceedance using the log-log linear ground motion hazard model. The results express at a glance the probabilities of yielding and collapse against various levels of ground motion intensities.

Grounding Characteristic Analysis of Plate Electrodes

  • Kim, Sung-Sam;Kim, Ju-Chan;Koh, Hee-Seog
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.53-60
    • /
    • 2007
  • In this study, an experiment on the efficient construction method of plate electrodes, the influence of electric potential interference in plate electrodes, and building foundations were explored. The experimental result of the electric potential measurement was taken on the basis of the direction of movement and the condition in which the plate electrodes are laid underground in building foundations. It shows that the construction method of laying the plate electrodes vertically exhibits a more efficient reduction of electric potential in a diagonal direction and on an X axis than laying plates horizontally. For plate electrode construction in an area that has uniform conditions, the parallel joint construction method is more effective than a single construction to reduce earth electrical potential and ground resistance. In addition, a straight arrangement performs well in ground efficiency, compared to the parallel arrangement.

The capacity loss of a RCC building under mainshock-aftershock seismic sequences

  • Zhai, Chang-Hai;Zheng, Zhi;Li, Shuang;Pan, Xiaolan
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.295-306
    • /
    • 2018
  • Reinforced concrete containment (RCC) building has long been considered as the last barrier for keeping the radiation from leaking into the environment. It is important to quantify the performance of these structures and facilities considering extreme conditions. However, the preceding research on evaluating nuclear power plant (NPP) structures, particularly considering mainshock-aftershock seismic sequences, is deficient. Therefore, this manuscript serves to investigate the seismic fragility of a typical RCC building subjected to mainshock-aftershock seismic sequences. The implementation of the fragility assessment has been performed based on the incremental dynamic analysis (IDA) method. A lumped mass RCC model considering the tri-linear skeleton curve and the maximum point-oriented hysteretic rule is employed for IDA analyses. The results indicate that the seismic capacity of the RCC building would be overestimated without taking into account the mainshock-aftershock effects. It is also found that the seismic capacity of the RCC building decreases with the increase of the relative intensity of aftershock ground motions to mainshock ground motions. In addition, the effects of artificial mainshock-aftershock ground motions generated from the repeated and randomized approaches and the polarity of the aftershock with respect to the mainshock on the evaluation of the RCC are also researched, respectively.

Feasibility Study of High-Efficiency Ground Heat Exchanger using Double U-tube through a Real-Scale Experiment

  • Bae, Sangmu;Kim, Jaemin;Nam, Yujin
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.33-39
    • /
    • 2017
  • Purpose: The use of renewable energy system is essential for building energy independence and saving energy consumption in the building sector. Among renewable energy technologies, ground source heat pump(GSHP) system is more energy-efficient and environmental-friendly than other heat source systems due to utilize stable ground heat source. However, the GSHP system requires a high initial installation cost and installation space in limited urban area, so it is difficult to have superiority in the market of heat source system. Therefore, it is necessary to develop the installation method of low-cost and improve system performance. This paper aims to evaluate the performance of double u-tube ground heat exchanger(GHX) and verify system feasibility through real-scale experiment. Method: In this study, the real-scale experiment of vertical closed-type GSHP system was conducted using double u-tube GHX and high-efficiency grout. Through the verification experiment, heat source temperature, heat exchange rate(HER) and seasonal performance factor(SPF) were measured according to the long-term operation. In addition, the feasibility analysis was conducted comparing to the single u-tube system. Result: In the results of experiment, average HER was 136.27 W/m and average SPF was 5.41. Furthermore, compared to the single u-tube, the installation cost of the developed system could be reduced about 70% in the same heating load condition.

A Method for Reduction in Ground Turbulence by the Constructions in the Vicinity of Runway (활주로 주변 건물로 인하여 발생되는 Ground Turbulence 감소 방안)

  • Hong, Gyo-Young;Sheen, Dong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.820-830
    • /
    • 2009
  • This paper illustrates how simulation modeling can be reduced of ground turbulence by the constructions in the vicinity of airport runway and reports on a cause of ground turbulence using two-dimensional CFD analysis. Interesting result is that the shape in cross-section show the higher ground turbulence than the height of the building. The predicted results confirmed reduction of wind-effect by doing that set up the building with a fence, terraced shape or gap and it can generate turbulence in embryo at this stage. We knows that cross-wind effect in the vicinity of airport runway is highly dependent on the shape of the buildings.

  • PDF