• Title/Summary/Keyword: Ground wave

Search Result 900, Processing Time 0.029 seconds

BATHYMETRIC MODULATION ON WAVE SPECTRA

  • Liu, Cho-Teng;Doong, Dong-Jiing
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.344-347
    • /
    • 2008
  • Ocean surface waves may be modified by ocean current and their observation may be severely distorted if the observer is on a moving platform with changing speed. Tidal current near a sill varies inversely with the water depth, and results spatially inhomogeneous modulation on the surface waves near the sill. For waves propagating upstream, they will encounter stronger current before reaching the sill, and therefore, they will shorten their wavelength with frequency unchanged, increase its amplitude, and it may break if the wave height is larger than 1/7 of the wavelength. These small scale (${\sim}$ 1 km changes is not suitable for satellite radar observation. Spatial distribution of wave-height spectra S(x, y) can not be acquired from wave gauges that are designed for collecting 2-D wave spectra at fixed locations, nor from satellite radar image which is more suitable for observing long swells. Optical images collected from cameras on-board a ship, over high-ground, or onboard an unmanned auto-piloting vehicle (UAV) may have pixel size that is small enough to resolve decimeter-scale short gravity waves. If diffuse sky light is the only source of lighting and it is uniform in camera-viewing directions, then the image intensity is proportional to the surface reflectance R(x, y) of diffuse light, and R is directly related to the surface slope. The slope spectrum and wave-height spectra S(x, y) may then be derived from R(x, y). The results are compared with the in situ measurement of wave spectra over Keelung Sill from a research vessel. The application of this method is for analysis and interpretation of satellite images on studies of current and wave interaction that often require fine scale information of wave-height spectra S(x, y) that changes dynamically with time and space.

  • PDF

Measured Return Loss and Predicted Interference Level of PCB Integrated Filtering Antenna at Millimeter-Wave

  • Lee Jae-Wook;Kim Bong-Soo;Song Myung-Sun
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.3
    • /
    • pp.140-145
    • /
    • 2005
  • In this paper, an experimental investigation for return loss and a software-based prediction for interference level of single-packaged filtering antenna composed of dielectric waveguide filter and PCB(Printed Circuit Board) slot antenna in transceiver module have been carried out with several different feeding structures in millimeter-wave regime. The implementation and embedding method of the existing air-filled waveguide filters working at millimeter-wave frequency on general PCB substrate have been described. In a view of the implementation of each components, the dielectric waveguide embedded in PCB and LTCC(Low Temparature Co-fired Ceramic) substrates has employed the via fences as a replacement with side walls and common ground plane to prevent energy leakage. The characteristics of several prototypes of filtering antenna embedded in PCB substrate are considered by comparing the wideband and transmission characteristics as a function of bent angle of transmission line connecting two components. In addition, as an essential to the packaging of transceiver module working at millimeter-wave, miniaturization technology maintaining the performances of independent components and the important problems caused by integrating and connecting the different components in different layers are described in this paper.

Verifications of the Impact-echo Technique for Integrity Evaluations of the Drilled Shaft using Full Scale Tests (현장시험에 의한 충격반향기법의 말뚝 건전도 검사 적용성 평가)

  • Jung, Gyung-Ja;Cho, Sung-Min;Kim, Hong-Jong;Jung, Jong-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.33-40
    • /
    • 2005
  • Impact-echo test, a kind of simple and economical method to evaluate the integrity of drilled piles has some limitations to use because the stress wave can be generated only on the head of a pile and the wave propagation in the pile with surrounding soils are very complicated. Numerical analyses and model tests in the laboratory have shown that both the ratio of length to diameter of a pile and the stiffness ratio of pile to soil have influence on the resolution of testing results. Full scale testing piles which have artificial defects were used to verify the capability of impact-echo technique as a tool for the pile integrity evaluation. Behaviour of the reflected signal of stress wave was investigated according to the type of defects. Elastic modulus of the pile was calculated using the wave velocity in the pile and the unconfined strength of concrete specimen. Influences of the stiffness difference between the pile and the ground on the characteristics of a wave signal were also examined.

  • PDF

Mobile harbor: structural dynamic response of RORI crane to wave-induced rolling excitation

  • Cho, Jin-Rae;Han, Ki-Chul;Hwang, Soon-Wook;Cho, Choon-Soo;Lim, O-Kaung
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.679-690
    • /
    • 2012
  • A new concept sea-floating port called mobile harbor has been introduced, in order to resolve the limitation of current above-ground port facilities against the continuous growth of worldwide marine transportation. One of important subjects in the design of a mobile harbor is to secure the dynamic stability against wave-induced excitation, because a relatively large-scale heavy crane system installed at the top of mobile harbor should load/unload containers at sea under the sea state up to level 3. In this context, this paper addresses a two-step sequential analytical-numerical method for analyzing the structural dynamic response of the mobile harbor crane system to the wave-induced rolling excitation. The rigid ship motion of mobile harbor by wave is analytically solved, and the flexible dynamic response of the crane system by the rigid ship motion is analyzed by the finite element method. The hydrodynamic effect between sea water and mobile harbor is reflected by means of the added moment of inertia.

Evaluation of Shear Wave Velocity Profiles by Performing Uphole Test Using SPT (표준관입시험을 이용한 업홀시험에서 전단파 속도 주상도의 도출)

  • 김동수;방은석;서원석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.135-146
    • /
    • 2003
  • Uphole test is a seismic field test using receivers on ground surface and a source in depth. In this paper, the uphole test using SPT(standard penetration test) which is economical and reliable for obtaining shear wave velocity profile was introduced. In the proposed uphole test, SPT sampler which is common in site investigation, was used as a source and several 1Hz geophones in line were used as receivers. Test procedures in field and interpretation methods for obtaining interval times and for determining shear wave velocity profile considering refracted ray path were introduced. Finally, uphole test was performed at three sites, and the applicability of the proposed uphole test was verified by comparing wave velocity profiles determined by the uphole test with the profiles determined by downhole test, SASW test and SPT-N values.

Prediction of Physical Properties and Shear Wave Velocity of the Ground Using the Flat TDR System (Flat TDR 시스템을 이용한 지반의 물리적 특성 및 전단파속도 예측)

  • Jeong, Chanwook;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.173-191
    • /
    • 2022
  • In this study, the shear wave velocity of the ground was measured using Flat TDR, and the precision analysis of the measured value and the verification of field applicability were performed. The shear wave velocity measurement value was derived in the field using the piezo-stack combined in the Flat TDR. analyzed. As a result of the experiment, the average value of the change in shear wave speed at the time of grout material injection was 10.15 m/s at the beginning of age, and the average value of the change in shear wave speed after the 7th to 14th days was 65.99 m/s, showing a tendency to increase with age. Also, it was found that dry density and shear wave speed increased as the water content increased on the dry side, and that the dry density and shear wave rate decreased as the water content increased on the wet side as the water content increased. The shear modulus value derived from the field test was confirmed to be a minimum of 17.36 MPa and a maximum of 28.13 MPa, confirming a measurement value similar to the reference value. Through this, it can be seen that the measured value of the shear modulus using Flat TDR is reliable data, and it can be determined that the compaction management of the site can be effectively managed in the future.

Real-time Estimation of the Earthquake Magnitude Using the Bracketed Cumulative and Peak Parameters of the Ground-motion Acceleration of a Single Station (단일 지진관측소의 지반가속도 구간 누적값 및 최대값 파라미터를 이용한 실시간 지진규모 추정 연구)

  • Yun, Kwan Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2014
  • In industrial facilities sites, the conventional method determining the earthquake magnitude (M) using earthquake ground-motion records is generally not applicable due to the poor quality of data. Therefore, a new methodology is proposed for determining the earthquake magnitude in real-time based on the amplitude measures of the ground-motion acceleration mostly from S-wave packets with the higher signal-to-ratios, given the Vs30 of the site. The amplitude measures include the bracketed cumulative parameters and peak ground acceleration (As). The cumulative parameter is either CAV (Cumulative Absolute Velocity) with 100 SPS (sampling per second) or BSPGA (Bracketed Summation of the PGAs) with 1 SPS. The arithmetic equations to determine the earthquake magnitude are derived from the CAV(BSPGA)-As-M relations. For the application to broad ranges of earthquake magnitude and distance, the multiple relations of CAV(BSPGA)-As-M are derived based on worldwide earthquake records and successfully used to determine the earthquake magnitude with a standard deviation of ${\pm}0.6M$.

Optimum Elevation Angle Control of the Receiving Antenna for the Long Distance Air-Ground Common Data Link (장거리 공중-지상 영상정보용 데이터링크의 수신 안테나 최적 고각 제어 방법)

  • Ryu, Young-jae;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1528-1538
    • /
    • 2016
  • Common data link systems are designed to transmit the imaginary and signal intelligence data at long distance air-ground line of sight(LOS) link. In this paper, we analyze the received power variation according to the communication distance of the common data link using curved earth 2-Ray model suitable for received signal power analysis of long distance air-ground wireless channel. We propose optimal elevation angle control method of the receiving antenna to reduce a power variation caused by ground-reflected wave. Proposed method can get additional link margin compared to the conventional method without any additional hardware performance enhancement.

Ground Vibration Analysis for Light Rail Transit on Bridges (교량구간에서의 경량전철에 의한 지반진동 해석)

  • 김두기;이종재;윤정방;김두훈
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.71-82
    • /
    • 2000
  • Ground vibration analysis methods for Light Rail Transit(LRT) on bridges are studied. LRT loads acting on the piers are evaluated considering interactions between trains and a bridge. Two dimensional in-plane and axisymmetric wave propagations are used in ground vibration analyses, and then the results of them are compared one another. A modified axisymmetric method is presented, which can consider the effect of the train loadings on a series of piers as the train moves. Parametric studies are carried out for various train speeds, bridge types and geotechnical conditions to investigate the characteristics of ground vibrations.

  • PDF

Wideband Frequency Tunable Metamaterial Absorber Using Switchable Ground Plane (그라운드를 전환하여 주파수를 가변할 수 있는 광대역 메타물질 흡수체)

  • Jeong, Heijun;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.241-246
    • /
    • 2018
  • In this study, we proposed a wideband frequency tunable metamaterial absorber using a switchable ground plane (SGP). We proposed two fire retardant or flame resistant 4 (FR4) substrate structures for the SGP. An SGP is placed at the middle layer, between the top pattern and the bottom ground plane. The SGP can either be made ground or reactive, by switching the PIN diode ON/OFF. As the frequency is determined by the substrate thickness, the frequency can be switched from the SGP. The proposed absorber is demonstrated by full-wave simulations and measurements. When the SGP is turned on, an absorptivity higher than 90% is achieved from 3.5 GHz to 11 GHz. When the SGP is turned off, an absorptivity higher than 90 % is achieved from 1.7 GHz to 5.2 GHz.