DOI QR코드

DOI QR Code

Wideband Frequency Tunable Metamaterial Absorber Using Switchable Ground Plane

그라운드를 전환하여 주파수를 가변할 수 있는 광대역 메타물질 흡수체

  • Jeong, Heijun (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Lim, Sungjoon (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 정희준 (중앙대학교 전자전기공학부) ;
  • 임성준 (중앙대학교 전자전기공학부)
  • Received : 2018.02.20
  • Accepted : 2018.04.04
  • Published : 2018.04.30

Abstract

In this study, we proposed a wideband frequency tunable metamaterial absorber using a switchable ground plane (SGP). We proposed two fire retardant or flame resistant 4 (FR4) substrate structures for the SGP. An SGP is placed at the middle layer, between the top pattern and the bottom ground plane. The SGP can either be made ground or reactive, by switching the PIN diode ON/OFF. As the frequency is determined by the substrate thickness, the frequency can be switched from the SGP. The proposed absorber is demonstrated by full-wave simulations and measurements. When the SGP is turned on, an absorptivity higher than 90% is achieved from 3.5 GHz to 11 GHz. When the SGP is turned off, an absorptivity higher than 90 % is achieved from 1.7 GHz to 5.2 GHz.

본 연구에서는 그라운드를 전환하여 주파수를 가변할 수 있는 광대역 메타물질 흡수체를 제안하였다. 그라운드 전환을 위해 두 개의 FR4 기판 구조를 제안하였으며, 중간 기판의 다이오드 ON/OFF에 따라 입사되는 신호의 반사, 투과를 조절하여 기판 두께에 따른 주파수 가변 구조를 제안하였다. 이를 증명하기 위해 시뮬레이션과 측정을 통해 중간층이 ON 상태일 경우, 3.5~11 GHz에서 90 % 이상의 흡수율을 가졌고, 중간층이 OFF 상태일 경우, 1.7~5.2 GHz에서 90 % 이상의 흡수율을 가졌다.

Keywords

References

  1. C. M. Watts, X. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorber," Advanced Materials, vol. 24, no. 23, pp. 98-120, 2012.
  2. D. Schuring, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, and A. F. Starr., "Metamaterial electromagnetic cloak at microwave frequencies," Science, vol. 314, no. 5801, pp. 977-980. 2006. https://doi.org/10.1126/science.1133628
  3. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, "Flexible metamaterial absorber for stealth applications at terahertz frequencies," Optics Express, vol. 20, no. 1, pp. 635-643, 2012. https://doi.org/10.1364/OE.20.000635
  4. S. Shahparnia, O. M. Ramahi, "Electromagnetic interference(EMI) reduction from printed circuit boards(PCB) using electromagnetic bandgap structure," IEEE Transactions on Electromagnetic Compatibility, vol. 46, no. 4, pp. 580-587, 2004. https://doi.org/10.1109/TEMC.2004.837671
  5. C. L. Holloway, E. F Kuester, "A low-frequency model for wedge or pyramid absorber arrays-II: Computed and measured results," IEEE Transactions on Electromagnetic Compatibility, vol. 36, no. 4, pp. 307-313, Nov. 1994. https://doi.org/10.1109/15.328860
  6. L. J. Du Toit, "The design of Jauman absorbers," IEEE Antennas and Propagation Magazine, vol. 36, no. 6, pp. 17-25, Dec. 1994. https://doi.org/10.1109/74.370526
  7. X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. Teng, "Ultrathin multi-band planar metamaterial absorber based on standing wave resonances," Optics Express, vol. 20, no. 25, pp. 27756-27765, 2012. https://doi.org/10.1364/OE.20.027756
  8. M. Yoo, H. K. Kim, and S. Lim, "Angular and polarization-insensitive metamaterial absorber using subwave- length unit cell in multi-layer technology," IEEE Antennas Wireless Propagation Letters, vol. 15, pp. 414-417, 2016. https://doi.org/10.1109/LAWP.2015.2448720
  9. C. Mias, J. H. Yap, "A varactor-tunable high impedance surface with a resistive-limped-element biasing grid," IEEE Transactions on Antennas and Propagation, vol. 55, no. 7, pp. 1955-1962, Jul. 2007. https://doi.org/10.1109/TAP.2007.900228
  10. W. Xu, S. Sonkusale, "Microwave diode switchable metamaterial reflector/absorber," Applied Physics Letters, vol. 103, no. 031902, 2013.
  11. H. K. Kim, D. Lee, and S. Lim, "Frequency tunable metamaterial absorber using varactor-loaded fishnet-like resonator," Applied Optics, vol. 55, no. 15, pp. 4113- 4118, May 2016. https://doi.org/10.1364/AO.55.004113
  12. H. Bilgin, S. Zahertar, S. Sadeghzadeh, A. D. Yalcinkaya, and H. Torun, "Physical a MEMS-based terahertz detector with metamaterial-based absorber and optical interferometric readout," Sensors Actuators A: Physical, vol. 244, pp. 292-298, 2016. https://doi.org/10.1016/j.sna.2016.04.021