• Title/Summary/Keyword: Ground turbulence

Search Result 89, Processing Time 0.023 seconds

A Method for Reduction in Ground Turbulence by the Constructions in the Vicinity of Runway (활주로 주변 건물로 인하여 발생되는 Ground Turbulence 감소 방안)

  • Hong, Gyo-Young;Sheen, Dong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.820-830
    • /
    • 2009
  • This paper illustrates how simulation modeling can be reduced of ground turbulence by the constructions in the vicinity of airport runway and reports on a cause of ground turbulence using two-dimensional CFD analysis. Interesting result is that the shape in cross-section show the higher ground turbulence than the height of the building. The predicted results confirmed reduction of wind-effect by doing that set up the building with a fence, terraced shape or gap and it can generate turbulence in embryo at this stage. We knows that cross-wind effect in the vicinity of airport runway is highly dependent on the shape of the buildings.

  • PDF

A study on the reduction in Ground Turbulence by the fence in the vicinity of airport runway (활주로 주변에 설치된 fence로 인한 Ground Turbulence의 감소 대한 연구)

  • Sheen, Dong-Jin;Hong, Gyo-Young;Kim, Young-In
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.4
    • /
    • pp.32-41
    • /
    • 2009
  • This paper presents the work being carried out in order to reduce the ground turbulence by the fence in the vicinity of airport runway. In preliminary study, we knows that cross-wind effect in the vicinity of runway is highly dependent on the shape of the buildings and have predicted results confirmed reduction of wind-effect by doing that set up the building with a fence, terraced shape or gap. This study is to figure out effect of ground turbulence by the building with fence, which is changing fence height, in using two-dimensional computational fluid dynamics analysis.

  • PDF

Analysis of the Influence of Atmospheric Turbulence on the Ground Calibration of a Star Sensor

  • Xian Ren;Lingyun Wang;Guangxi Li;Bo Cui
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.38-44
    • /
    • 2024
  • Under the influence of atmospheric turbulence, a star's point image will shake back and forth erratically, and after exposure the originally small star point will spread into a huge spot, which will affect the ground calibration of the star sensor. To analyze the impact of atmospheric turbulence on the positioning accuracy of the star's center of mass, this paper simulates the atmospheric turbulence phase screen using a method based on a sparse spectrum. It is added to the static-star-simulation device to study the transmission characteristics of atmospheric turbulence in star-point simulation, and to analyze the changes in star points under different atmospheric refractive-index structural constants. The simulation results show that the structure function of the atmospheric turbulence phase screen simulated by the sparse spectral method has an average error of 6.8% compared to the theoretical value, while the classical Fourier-transform method can have an error of up to 23% at low frequencies. By including a simulation in which the phase screen would cause errors in the center-of-mass position of the star point, 100 consecutive images are selected and the average drift variance is obtained for each turbulence scenario; The stronger the turbulence, the larger the drift variance. This study can provide a basis for subsequent improvement of the ground-calibration accuracy of a star sensitizer, and for analyzing and evaluating the effect of atmospheric turbulence on the beam.

The study of the turbulence distribution of Feb. and Mar. (2월과 3월의 난류분포에 대한 연구)

  • Shin, D.W.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.2
    • /
    • pp.27-34
    • /
    • 2005
  • This study is performed to analyze the turbulence distribution of Fev. & Mar. in 2000 by the analysis of the parameters related with flight data of FDR(Flight Data Recorder). In the analysis, we selected the Solid State Flight Data Recorder(SSFDR) & Universal Flight Data Recorder(UFDR) flight data of the exact same aircraft(capacity 120 persons). Through this study, we verified that turbulence is concerned with configuration of the ground and flight situation of aircraft.

  • PDF

Analysis of Factors Influencing the Measurement Error of Ground-based LiDAR (지상기반 라이다의 측정 오차에 영향을 미치는 요인 분석)

  • Kang, Dong-Bum;Huh, Jong-Chul;Ko, Kyung-Nam
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.25-37
    • /
    • 2017
  • A study on factors influencing measurement error of Ground-based LiDAR(Light Detection And Ranging) system was conducted in Kimnyeong wind turbine test site on Jeju Island. Three properties of wind including inclined angle, turbulence intensity and power law exponent were taken into account as factors influencing the measurement error of Ground-based LiDAR. In order to calculate LiDAR measurements error, 2.5-month wind speed data collected from LiDAR (WindCube v2) were compared with concurrent data from the anemometer on a nearby 120m-high meteorological mast. In addition, data filtering was performed and its filtering criteria was based on the findings at previous researches. As a result, at 100m above ground level, absolute LiDAR error rate with absolute inclined angle showed 4.58~13.40% and 0.77 of the coefficients of determination, $R^2$. That with turbulence intensity showed 3.58~23.94% and 0.93 of $R^2$ while that with power law exponent showed 4.71~9.53% and 0.41 of $R^2$. Therefore, it was confirmed that the LiDAR measurement error was highly affected by inclined angle and turbulence intensity, while that did not much depend on power law exponent.

A Numerical Study on the Aerodynamic Characteristics of a Bus-Like Bluff Body - Effect of Turbulence Model and Discretisation Scheme - (버스형상 무딘물체의 공력특성에 관한 수치해석적 고찰 - 난류모델과 이산화법의 영향 -)

  • 김민호;국종영;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.115-123
    • /
    • 2003
  • With the advent of high performance computers and more efficient numerical algorithms, computational fluid dynamics(CFD) has come out as a modem alternative for reducing the use of wind tunnels test in automotive engineering. However, in spite of the fact that many competent researchers have made all their talents in developing turbulence model over since the past dozen or more years, it has been an important impediment in using the CFD effectively to design machinery and to diagnose or to improve engineering problems in the industry since the turbulence model has been acting as the Achilles' tendon in aspect of the reliability even to this time. In this study, Reynolds-averaged Wavier-Stokes equations were solved to simulate an incompressible turbulent flow around a bus-like bluff body near ground plane. In order to investigate the effect of the discretisation schemes and turbulence model on the aerodynamic forces several turbulence models with five convective difference schemes are adopted. From the results of this study, it is clear that choice of turbulence model and discretisation scheme profoundly affects the computational outcome. The results also show that the adoption of RNG $k-\varepsilon$ turbulence model and nonlinear quadratic turbulence model with the second order accurate discretisation scheme predicts fairly well the aerodynamic coefficients.

Development of Lagrangian Particle Dispersion Model Based on a Non-equilibrium 2.5 Level Closure Turbulence Model (비평형 2.5 난류모델을 이용한 라그란지안 입자 확산모델 개발)

  • 구윤서
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.613-623
    • /
    • 1999
  • A Lagrangian particle dispersion mode l(LPDM) coupled with the prognostic flow model based on nonequilibrium level 2.5 turbulence closure has been dcveloped to simulate the dispersion from an elevated emission source. The proposed model did not require any empirical formula or data for the turbulent statistics such as velocity variances and Lagrangian time scales since the turbulence properties for LPDM were calculated from results of the flow model. The LPDM was validated by comparing the model results against the wind tunnel tracer experiment and ISCST3 model. The calculated wind profile and turbulent velocity variances were in good agreement with those measured in the wind tunnel. The ground level concentrations along the plume centerline as well as the dispersion codfficients also showed good agreement in comparison with the wind tunnel tracer experiment. There were some discrepancies on the horizontal spread of the plume in comparison with the ISCST3 but the maximum ground level concentrations were in a good confidence range. The results of comparisons suggested that the proposed LPDM with the flow model was an effective tool to simulate the dispersion in the flow situation where the turbulent characteristics were not available in advance.

  • PDF

Flow Analysis of Three-Dimensional Wing in Ground Effect (지면 효과를 갖는 3차원 날개의 유동해석)

  • Im Ye-Hoon;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.84-90
    • /
    • 2000
  • Ground effect of three-dimensional wing is studied. LU-factored Implicit upwind TVD scheme and Baldwin-Lomax turbulence model are used for this calculation. To investigate ground effect, NACA 4415 wing at M=0.5 calculated. Two different angles of attack and three cases of flight height are calculated. As increasing angle of attack, the ground effect becomes strong. In case of NACA 4415 wing in ground effect, strength of wing tip vortex becomes stronger than that of free flight.

  • PDF

Performance Analysis of the Supersonic Nozzle Employed in a Small Liquid-rocket Engine for Ground Firing Test (소형 액체로켓엔진 지상연소시험용 초음속 노즐의 성능해석)

  • Kam, Ho-Dong;Kim, Jeong-Soo;Bae, Dae-Seok;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.321-324
    • /
    • 2011
  • A computational analysis of nozzle flow characteristics and plume structure using Reynolds-averaged Navier-Stokes equations with $k-{\omega}$ SST turbulence model was conducted to examine performance of the supersonic nozzle employed in a small liquid-rocket engine for ground firing test. Computed results and experimental outcome of 2-D converging-diverging nozzle flow were compared for verifying the computational capability as well as the turbulence model validity. Numerical computations of 2-D axisymmetric nozzle flow was carried out with the selected model. As a result, flow separation with backflow appeared around the nozzle exit. This investigation was reported as a background data for the optimal nozzle design of small liquid-propellant rocket engine for ground test.

  • PDF