• 제목/요약/키워드: Ground testbed

검색결과 24건 처리시간 0.025초

선로변 시설물 차상제어를 위한 차상중심 열차제어시스템의 통신 연속성 시험 (Communication Consecutive Test of Train Oriented Control System for Wayside Equipment Control)

  • 백종현
    • 전기학회논문지
    • /
    • 제63권5호
    • /
    • pp.703-712
    • /
    • 2014
  • To improve the efficiency and safety of railway systems, the train control system has been considerably evolved from the ground-equipment-based control system (e.g. track circuit, interlocking system, etc.) into the on-board-equipment-based control system. In addition, this train control system enables the rolling stock to intelligently control the trackside facilities by introducing the information and communication technologies (ICT). Accordingly, since the ICT-based train control system makes the railway system be simplified (i.e. the heavy ground-equipment can be removed), the efficient and cost-effective railway system can be realized. In this paper, we perform the feasibility test of the ICT-based train control system via a simulation. To this end, we have developed the prototypes of the on-board controller and wayside object control units which control the point and crossing gate and performed the integrated operation simulation in a testbed. In this paper, before the field test of the on-board-controller-based train control system, we perform the Consecutive operation test for prototypes of the on-board controller, wayside object control units and local control computer.

지표투과레이더를 이용한 아스팔트 혼합물의 공극률 예측에 관한 연구 (Estimation of Air Voids in Asphalt Mixtures Using Ground-Penetrating Radar)

  • 김제원;김연태;김부일;박희문
    • 한국도로학회논문집
    • /
    • 제18권4호
    • /
    • pp.55-61
    • /
    • 2016
  • PURPOSES : The objective of this study was to determine the relationship between the dielectric characteristics of asphalt mixtures and the air voids present in them using ground penetrating radar (GPR) testing. METHODS : To measure the dielectric properties of the asphalt mixtures, the reflection coefficient method and the approach based on the actual thickness of the asphalt layer were used. An air-couple-type GPR antenna with a center frequency of 1 GHz was used to measure the time for reflection from the asphalt/base layer interface. A piece of aluminum foil was placed at the interface to be able to determine the reflection time of the GPR signal with accuracy. An asphalt pavement testbed was constructed, and asphalt mixtures with different compaction numbers were tested. After the GPR tests, the asphalt samples were cored and their thicknesses and number of air voids were measured in the laboratory. RESULTS : It was found the dielectric constant of asphalt mixtures tends to decrease with an increase in the number of air voids. The dielectric constant values estimated from the reflection coefficient method exhibited a slight correlation to the number of air voids. However, the dielectric constant values measured using the approach based on the actual asphalt layer thickness were closely related to the asphalt mixture density. Based on these results, a regression equation to determine the number of air voids in asphalt mixtures using the GPR test method was proposed. CONCLUSIONS : It was concluded that the number of air voids in an asphalt mixture can be calculated based on the dielectric constant of the mixture as determined by GPR testing. It was also found that the number of air voids was exponentially related to the dielectric constant, with the coefficient of determination, $R^2$, being 0.74. These results suggest that the dielectric constant as determined by GPR testing can be used to improve the construction quality and maintenance of asphalt pavements.

초소형위성 지상 환경 도킹 시험 (Ground Test of Docking Phase for Nanosatellite)

  • 김해동;최원섭;김민기;김진형;김기덕;김지석;조동현
    • 우주기술과 응용
    • /
    • 제1권1호
    • /
    • pp.7-22
    • /
    • 2021
  • 본 논문에서는 국내 최초로 개발 중인 랑데부/도킹 기술검증용 초소형위성의 지상 환경에서의 도킹 단계 시험 결과에 대해 기술하였다. 랑데부/도킹 기술은 우주기술 중 고난이도 기술로서 우주 궤도상에서 상대 물체에 접근한 후 작업을 수행하는 데 매우 핵심적인 기술이기도 하다. 본 논문에서는 에어베어링 장치를 이용하여 체이서가 모의 타겟으로 접근하여 최종적으로 도킹하는 단계의 지상시험 결과에 대해 기술하고자 한다. 본 논문에서 검증된 2차원 평판에서 도킹 단계에서의 추력 제어 알고리즘과 시각 기반 센서를 이용한 상대물체 인식 및 상대거리 추정 알고리즘을 기반으로 추후에는 우주에서의 시험을 위한 3차원 공간에서의 랑데부/도킹 알고리즘으로 확장·개발하는 데 이용하고자 한다.

해외 테스트베드 지역 아리랑 위성 3호 DSM 성능평가 (Performance Evaluation of KOMPSAT-3 Satellite DSM in Overseas Testbed Area)

  • 오관영;황정인;유우선;이광재
    • 대한원격탐사학회지
    • /
    • 제36권6_2호
    • /
    • pp.1615-1627
    • /
    • 2020
  • 본 연구의 목적은 해외 테스트베드 지역에서 제작된 아리랑 3호 DSM의 성능을 비교 분석하는 것이다. 이를 위하여 미국 샌프란시스코 지역을 촬영한 아리랑 3호 in-track(동일 궤도) stereo(입체) 영상을 수집하였다. 촬영된 영상의 스테레오 기하 요소는(B/H, convergence angle 등) 모두 안정적 범위에 있음을 확인하였다. 지상기준점을 이용한 정밀 센서모델링과 DSM 자동 생성 기법을 적용하여, 1 m 해상도의 DSM을 제작하였다. 평가 및 보정을 위한 참조 자료는 Airbus에서 상용 판매하고 있는 1 m 해상도의 Elevation1 DSM 제품과 Compass Data Inc.에서 실측한 0.01 m 이내 정확도의 지상점이다. 아리랑 3호의 정밀 센서 모델링 정확도는 수평 및 수직 방향으로 0.5 m (RMSE) 이내를 나타냈다. 생성된 DSM과 참조 DSM 사이의 difference map을 작성하였을 때, 평균과 표준 편차는 각각 0.61 m와 5.25 m로 유사한 정확도를 나타냈으나, 일부 지역에서는 100 m 이상의 큰 차이를 나타냈다. 이러한 지역은 초 고층 건물의 밀집지역의 폐색 지역에서 주로 나타났다. 향후, 아리랑 3호 tri-stereo 영상의 활용과 다양한 후처리 기법이 개발된다면 보다 향상된 품질의 DSM 생성이 가능할 것으로 판단된다.

동치환공법의 적정심도 결정에 관한 연구 (LandAnalysis of Effective Depth of Dynamic Replacement Method)

  • 김성환
    • 한국재난정보학회 논문집
    • /
    • 제14권3호
    • /
    • pp.305-314
    • /
    • 2018
  • 연구목적: 동치환공법은 유사한 동다짐공법에 비해 동치환 직경, 심도, 간격, 타격에너지(중추 무게와 낙하고), 지반강도 증대 효과, 지반 개량효율 등에 대한 연구 및 실증이 부족하다. 연구방법: 본 연구에서는 실트질 점토지반을 연구 대상 지반으로 선정하여 예비 동치환시공과 본시공 동치환의 2가지 경우로 나눠서 지반개량을 실시하고 효과를 분석하였으며, 결과를 바탕으로 적정 개량심도 결정 및 개량효과에 미치는 인자에 관하여 연구하였다. 연구결과: 실트질 점토 지반을 대상으로 동치환 적정 심도 결정, 지반개량효과에 끼치는 특성을 상세히 분석하여 동치환 시 적용할 수 있는 개량심도 ($D_R$) 관계식을 제안하였다. 결론: 동치환공법을 실트질 점토 지반에 적용한 경우, 동다짐공법의 낙하에너지보다 1.25~2.5배 증가시켜야 하는 것으로 나타났다.

사이버 물리적 시스템의 개발 - 가상 자율적 굴삭기 (Development of a Cyber-physical System - A Virtual Autonomous Excavator)

  • 박홍석;렌곡찬
    • 한국CDE학회논문집
    • /
    • 제20권3호
    • /
    • pp.298-311
    • /
    • 2015
  • Nowadays, automatic digging operation of an excavator is a big challenge due to the complexity of digging environment, the hardness of soil and buried obstacles into the ground. In order to achieve the maximum soil bucket volume, this paper introduces a novel engineering model that was developed as a virtual excavator in the design phase. Through this model, the designs of mechanical and control systems for autonomous excavator are executed and modified easily before developing in real testbed. Based on a concept of an autonomous excavation, a mechanical system of excavator was first designed in SOLIDWORKS, and a soil model also was modeled by finite-element analysis in ANSYS, both modeled models were then exported to ADAMS environment to investigate the digging behavior through virtual simulation. An intelligent control strategy was generated in MATLAB/Simulink to control the excavator operation. The simulation results were demonstrated by effectiveness of the proposed excavator robot in testing scenarios with many soil types and obstacles.

Real-time large-scale hybrid testing for seismic performance evaluation of smart structures

  • Mercan, Oya;Ricles, James;Sause, Richard;Marullo, Thomas
    • Smart Structures and Systems
    • /
    • 제4권5호
    • /
    • pp.667-684
    • /
    • 2008
  • Numerous devices exist for reducing or eliminating seismic damage to structures. These include passive dampers, semi-active dampers, and active control devices. The performance of structural systems with these devices has often been evaluated using numerical simulations. Experiments on structural systems with these devices, particularly at large-scale, are lacking. This paper describes a real-time hybrid testing facility that has been developed at the Lehigh University NEES Equipment Site. The facility enables real-time large-scale experiments to be performed on structural systems with rate-dependent devices, thereby permitting a more complete evaluation of the seismic performance of the devices and their effectiveness in seismic hazard reduction. The hardware and integrated control architecture for hybrid testing developed at the facility are presented. An application involving the use of passive elastomeric dampers in a three story moment resisting frame subjected to earthquake ground motions is presented. The experiment focused on a test structure consisting of the damper and diagonal bracing, which was coupled to a nonlinear analytical model of the remaining part of the structure (i.e., the moment resisting frame). A tracking indictor is used to track the actuator ability to achieve the command displacement during a test, enabling the quality of the test results to be assessed. An extension of the testbed to the real-time hybrid testing of smart structures with semi-active dampers is described.

Design and Verification of Spacecraft Pose Estimation Algorithm using Deep Learning

  • Shinhye Moon;Sang-Young Park;Seunggwon Jeon;Dae-Eun Kang
    • Journal of Astronomy and Space Sciences
    • /
    • 제41권2호
    • /
    • pp.61-78
    • /
    • 2024
  • This study developed a real-time spacecraft pose estimation algorithm that combined a deep learning model and the least-squares method. Pose estimation in space is crucial for automatic rendezvous docking and inter-spacecraft communication. Owing to the difficulty in training deep learning models in space, we showed that actual experimental results could be predicted through software simulations on the ground. We integrated deep learning with nonlinear least squares (NLS) to predict the pose from a single spacecraft image in real time. We constructed a virtual environment capable of mass-producing synthetic images to train a deep learning model. This study proposed a method for training a deep learning model using pure synthetic images. Further, a visual-based real-time estimation system suitable for use in a flight testbed was constructed. Consequently, it was verified that the hardware experimental results could be predicted from software simulations with the same environment and relative distance. This study showed that a deep learning model trained using only synthetic images can be sufficiently applied to real images. Thus, this study proposed a real-time pose estimation software for automatic docking and demonstrated that the method constructed with only synthetic data was applicable in space.

도로함몰 위험도 평가를 위한 실대형 포장가속시험 기초 연구 (A Preliminary Study for Assessing the Risk of Road Collapse Using Accelerated Pavement Testing)

  • 박희문;김연태;최지영;김기현
    • 한국도로학회논문집
    • /
    • 제18권5호
    • /
    • pp.57-62
    • /
    • 2016
  • PURPOSES : The objective of this study is to evaluate the effect of size and depth of cavities on the pavement failure using the full-scale accelerated pavement testing. METHODS : A full-scale testbed was constructed by installing the artificial cavities at a depth of 0.3 m and 0.7 m from the pavement surface for accelerated pavement testing. The cavities were made of ice with a dimension of 0.5 m*0.5m*0.3m, and the thickness of asphalt and base layer were 0.2 m and 0.3 m, respectively. The ground penetrating radar and endoscope testing were conducted to determine the shape and location of cavities. The falling weight deflectometer testing was also performed on the cavity and intact sections to estimate the difference of structural capacity between the two sections. A wheel loading of 80 kN was applied on the pavement section with a speed of 10 km/h in accelerated pavement testing. The permanent deformation was measured periodically at a given number of repetitions. The correlation between the depth and size of cavities and pavement failure was investigated using the accelerated pavement testing results. RESULTS : It is found from FWD testing that the center deflection of cavity section is 10% greater than that of the intact section, indicating the 25% reduction of modulus in subbase layer due to the occurrence of the cavity. The measured permanent deformation of the intact section is approximately 10 mm at 90,000 load repetitions. However, for a cavity section of 0.7 m depth, a permanent deformation of 30 mm was measured at 90,000 load repetitions, which is three times greater than that of the intact section. At cavity section of 0.3 m, the permanent deformation reached up to approximately 90 mm and an elliptical hole occurred at pavement surface after testing. CONCLUSIONS : This study is aimed at determining the pavement failure mechanism due to the occurrence of cavities under the pavement using accelerated pavement testing. In the future, the accelerated pavement testing will be conducted at a pavement section with different depths and sizes of cavities. Test results will be utilized to establish the criteria of risk in road collapse based on the various conditions.

In-construction vibration monitoring of a super-tall structure using a long-range wireless sensing system

  • Ni, Y.Q.;Li, B.;Lam, K.H.;Zhu, D.P.;Wang, Y.;Lynch, J.P.;Law, K.H.
    • Smart Structures and Systems
    • /
    • 제7권2호
    • /
    • pp.83-102
    • /
    • 2011
  • As a testbed for various structural health monitoring (SHM) technologies, a super-tall structure - the 610 m-tall Guangzhou Television and Sightseeing Tower (GTST) in southern China - is currently under construction. This study aims to explore state-of-the-art wireless sensing technologies for monitoring the ambient vibration of such a super-tall structure during construction. The very nature of wireless sensing frees the system from the need for extensive cabling and renders the system suitable for use on construction sites where conditions continuously change. On the other hand, unique technical hurdles exist when deploying wireless sensors in real-life structural monitoring applications. For example, the low-frequency and low-amplitude ambient vibration of the GTST poses significant challenges to sensor signal conditioning and digitization. Reliable wireless transmission over long distances is another technical challenge when utilized in such a super-tall structure. In this study, wireless sensing measurements are conducted at multiple heights of the GTST tower. Data transmission between a wireless sensing device installed at the upper levels of the tower and a base station located at the ground level (a distance that exceeds 443 m) is implemented. To verify the quality of the wireless measurements, the wireless data is compared with data collected by a conventional cable-based monitoring system. This preliminary study demonstrates that wireless sensing technologies have the capability of monitoring the low-amplitude and low-frequency ambient vibration of a super-tall and slender structure like the GTST.