• Title/Summary/Keyword: Ground surface displacement

Search Result 244, Processing Time 0.02 seconds

Time-Series Interferometric Synthetic Aperture Radar Based on Permanent Scatterers Used to Analyze Ground Stability Near a Deep Underground Expressway Under Construction in Busan, South Korea (고정산란체 기반 시계열 영상레이더 간섭기법을 활용한 부산 대심도 지하 고속화도로 건설 구간의 지반 안정성 분석)

  • Taewook Kim;Hyangsun Han;Siung Lee;Woo-Seok Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.689-699
    • /
    • 2023
  • Assessing ground stability is critical to the construction of underground transportation infrastructure. Surface displacement is a key indicator of ground stability, and can be measured using interferometric synthetic aperture radar (InSAR). This study measured time-series surface displacement using permanent scatterer InSAR applied to Sentinel-1 SAR images acquired from January 2017 to June 2023 for the area around a deep underground expressway under construction to connect Mandeok-dong and Centum City in Busan, South Korea. Regions of seasonal subsidence and uplift were identified, as were regions with severe subsidence after summer 2022. To evaluate stability of the ground in the construction area, the mean displacement velocity, final surface displacement, cumulative surface displacement, and difference between minimum and maximum surface displacement were analyzed. Considering the time-series surface displacement characteristics of the study area, the difference between minimum and maximum surface displacement since June 2022 was found to be the most suitable parameter for evaluating ground stability. The results identified highly unstable ground in the construction area as being to the north of the mid-lower reaches of the Oncheon-cheon River and to the west of the Suyeong River at the point where both rivers meet, with the difference between minimum and maximum surface displacement of 40~60 mm.

Application of Laser Distance Measurer to measure ground surface displacement in slopes (사면의 지표변위 측정을 위한 레이저 거리측정기의 활용)

  • Cho, Yong-Chan;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.23-31
    • /
    • 2014
  • In this study, the method to measure effectively the ground surface displacement of slope was proposed using the Laser Distance Measurer (LDM). Applying the proposed technique is more simple and easier than the complicated and high-priced instrument to measure the ground surface displacement. LDM is an instrument that the red laser aimed at the target and then the reflected laser used for calculating the distance. The advantages of LDM are easy operating method, high measurement precision and lower in price. To check the feasibility, the proposed method applied to the real site that the ground surface displacement of slope was occurred continuously. The ground surface displacements were occurred in various points of the natural and cut slopes located at the lower part of coal mine waste heap due to the load of waste heap. To measure directly the ground surface displacement in this site, 6 measurement sections and 26 measurement points were selected. As the result of the displacement measured by the proposed technique within a certain period time, the accumulative ground surface displacement could be measured as well as the velocity of displacement could be estimated. Also, the progress direction of ground surface displacement can be confirmed and predicted through the analysis of all measured result.

Application of Photogrammetry Method to Measurement of Ground-Surface Displacement on the Slope (사면의 지표변위계측을 위한 사진측량기법의 적용)

  • Han, Jung-Geun;Bae, Sang-Ho;Oh, Da-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.3
    • /
    • pp.10-18
    • /
    • 2001
  • The existing measurement system to ground-surface displacement survey of the slope has been including the hazard for the measure in site and the difficulty for install, maintenance and control of expensive instruments, which are impossible of whole survey on the slope surface. To overcome of those defects, Softcopy Photogrammertry method is used, which can measure displacement of ground-surface on the slope and structure deformation vectors. Recently, the survey methods applying the advantages of Photogrammetry and Digital Photogrammetry Survey are widely used. In this study, therefore, the development and application of the new instrument mechanism on the the site example are studied. Through the application of Softcopy Photogrammetry, the 3-D data of ground surface on the dangerous slope could be effectively obtained at the long distance, which are obtained through the reform process of contour line. Those are different to the results of the Close-Range Photogrammetry analysis. In ground instrumentation parts, the new practical system shall be the technical base to improve of the instrument machine as well as can be widely applied in civil engineering and others branch.

  • PDF

Elastic solutions for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface

  • Wang, Ling;Zou, Jin-Feng;Yang, Tao;Wang, Feng
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.201-215
    • /
    • 2019
  • A new approach of analyzing the displacements and stress of the surrounding rock for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface is investigated in this study. In the proposed approach, by using a virtual image technique, the shear stress of the vertical ground surface is revised to be zero, and elastic solutions of the surrounding rock are obtained before stress revision. To revise the vertical normal stress and shear stress of horizontal ground surface generated by the combined action of the actual and image sinks, the harmonic functions and corresponding stress function solutions were adopted. Based on the Boussinesq's solutions and integral method, the horizontal normal stress of the vertical ground surface is revised to be zero. Based on the linear superposition principle, the final solution of the displacements and stress were proposed by superimposing the solutions obtained by the virtual image technique and the stress revision on the horizontal and vertical ground surfaces. Furthermore, the ground settlements and lateral displacements of the horizontal and vertical ground surfaces are derived by the proposed approach. The proposed approach was well verified by comparing with the numerical method. The discussion based on the proposed approach in the manuscript shows that smaller horizontal ground settlements will be induced by lower tunnel buried depths and smaller limb distances. The proposed approach for the displacement and stress of the surrounding rocks can provide some practical information about the surrounding rock stability analysis of shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface.

Displacement Measuring System for the Slope Stability Analysis Using the Softcopy Photogrammetry (사면안정해석을 위한 사진측량을 이용한 사면변위계측시스템)

  • 한중근;송영석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.23-32
    • /
    • 2003
  • The displacement measuring systems of slope ground surface are very expensive instruments and have disadvantages concerning installing, maintaining and surveying. The measuring works are very dangerous. Recently, simple systems are required to measure the displacement of slope ground surface in stages of cutting and maintaining slope. In this study, the mechanism of Softcopy Photogrammetry is applied to measure the displacement of slope ground surface. Three dimensional data of the slope ground surface can effectively be obtained in order to analyze slope stability. Computer Program, DIMA (Design IMmage Analysis), including the reformation process of a contour line was developed. As a result of this study, countermeasure and instruction standards of the displacement of slope ground surface before and after slope failure are established. Also, disadvantages of the existing system can be complemented.

Monitoring Time-Series Subsidence Observation in Incheon Using X-Band COSMO-SkyMed Synthetic Aperture Radar

  • Sang-Hoon Hong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.141-150
    • /
    • 2024
  • Ground subsidence in urban areas is mainly caused by anthropogenic factors such as excessive groundwater extraction and underground infrastructure development in the subsurface composed of soft materials. Global Navigation Satellite System data with high temporal resolution have been widely used to measure surface displacements accurately. However, these point-based terrestrial measurements with the low spatial resolution are somewhat limited in observing two-dimensional continuous surface displacements over large areas. The synthetic aperture radar interferometry (InSAR) technique can construct relatively high spatial resolution surface displacement information with accuracy ranging from millimeters to centimeters. Although constellation operations of SAR satellites have improved the revisit cycle, the temporal resolution of space-based observations is still low compared to in-situ observations. In this study, we evaluate the extraction of a time-series of surface displacement in Incheon Metropolitan City, South Korea, using the small baseline subset technique implemented using the commercial software, Gamma. For this purpose, 24 COSMO-SkyMed X-band SAR observations were collected from July 12, 2011, to August 27, 2012. The time-series surface displacement results were improved by reducing random phase noise, correcting residual phase due to satellite orbit errors, and mitigating nonlinear atmospheric phase artifacts. The perpendicular baseline of the collected COSMO-SkyMed SAR images was set to approximately 2-300 m. The surface displacement related to the ground subsidence was detected approximately 1 cm annually around a few Incheon Subway Line 2 route stations. The sufficient coherence indicates that the satellite orbit has been precisely managed for the interferometric processing.

Lateral Displacement and Ground Rising Movement with Soil Embankment (성토에 따른 지반의 측방변위와 지표면 융기량)

  • Jeong, Ji-Cheol;Shin, Bang-Woong;Oh, Se-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.2
    • /
    • pp.63-69
    • /
    • 2004
  • During and after the construction of embankment on soft ground, consolidation settlements and lateral displacements develop. But generally it's very difficult to predict the magnitude of lateral deformations and the correct distribution of lateral displacements with depth under the toe of embankment because the consolidation and the shear deformations of soft ground occur simultaneously. This study shows that later displacements of ground surface arise by embankment loading act on soft clay hight water contents in laboratory model testing. The results of model test are observed settlement of embankment, amount of maximum rising and displacement of ground surface with loading velocity. The formula were proposed to predict lateral movement by test series.

  • PDF

Effects of Ground Improvement Depending on the Type of Soil by Compaction Grouting System (토질의 종류에 따른 CGS공법의 지반개량효과에 관한 연구)

  • Chun, Byung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.211-220
    • /
    • 2002
  • CGS(Compaction Grouting System) is widely used in reinforcement of structural foundation and ground improvement in soft ground. But the effects of ground improvement depending on the type of soil must be studied in order to adopt in various soils (granular soil and cohesive soil). In this study, characteristics of ground improvement (the increase of N value, increase in unit weight, vertical displacement on the ground surface) by CGS method was compared through two cases that were performed in granular and cohesive soil. The results show that the closer to the grout hole, the more increase in N value and this trend appear distinctly in granular soil. Unit weight of ground increase largely near by the grout hole and decrease in far from it independently of the soil type. The vertical displacement on the ground surface appeared in smaller area in case of granular soil than cohesive soil.

The impact of EPB pressure on surface settlement and face displacement in intersection of triple tunnels at Mashhad metro

  • Eskandari, Fatemeh;Goharrizi, Kamran Goshtasbi;Hooti, Amir
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.769-774
    • /
    • 2018
  • The growth of cities requires the construction of new tunnels close to the existing ones. Prediction and control of ground movement around the tunnel are important especially in urban area. The ground respond due to EPB (Earth Pressure Balance) pressure are investigated using the finite element method by ABAQUS in intersection of the triplet tunnels (Line 2, 3 and 4) of Mashhad Urban Railway in Iran. Special attention is paid to the effect of EPB pressure on the tunnel face displacement. The results of the analysis show that in EPB tunneling, surface settlement and face displacement is related to EPB pressure. Moreover, it is found that tunnel construction sequence is a great effect in face displacement value. For this study, this value in Line 4 where is excavated after line 3, is smaller than that line. In addition, the trend of the displacement curves are changed with the depth for all lines where is located in above and below, close to and above the centerline tunnel face for Line 2, 3 and 4, respectively. It is concluded that: (i) the surface settlement decreases with increasing EPB pressure on the tunnel face; (ii) at a constant EPB pressure, the tunnel face displacement values increase with depth. In addition, this is depended on the tunneling sequence; (iii) the trend of the displacement curves change with the depth.

Experimental Study on the Ground Support Conditions of Pipe Ends in Single Span Pipe Greenhouse (단동파이프하우스의 지점조건 분석을 위한 실험 연구)

  • Lee, Suk-Gun;Lee, Jong-Won;Kwak, Cheul-Soon;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.188-196
    • /
    • 2008
  • Single span pipe greenhouses (pipe houses) are widely used in Korea because these simple structures are suitable for construction by farmers thus reducing labor cost. However, these pipe houses are very weak and frequently damaged by heavy snow and strong wind. Pipe house is constructed by pipe fabricator, which is anchored to the ground by inserting each pipe end into ground to $30\sim40cm$, so the ground support condition of pipe end is not clear for theoretical analysis on greenhouse structure. This study was carried out to find out the suitable ground support condition needed f3r structural analysis when pipe house was designed. The snow and wind loading tests on the actual size pipe house were conducted to measure the collapsing shape, displacement and strain. The experimental results were compared with the structural analysis results for 4 different ground support conditions of pipe ends(fixed at ground surface, hinged at ground surface, fixed under ground and hinged under ground). The pipe house under snow load was collapsed at the eaves as predicted, and the actual strain at the windward eave and ground support under wind load was larger than that under snow load. The displacement was the largest at the hinged support under ground, followed by the hinged at ground surface, the fixed under ground and then the fixed at ground surface independent of displacement direction and experimental loading condition. The experimental results agreed most closely with the results of theoretical analysis at the fixed condition under ground among 4 different ground support conditions. As the results, it was recommended that the pipe end support condition of single span pipe greenhouse was the fixed under ground for structural analysis.