• Title/Summary/Keyword: Ground stress distribution

Search Result 133, Processing Time 0.024 seconds

A Study on the Stress Distribution beneath Loaded Ground Surface Area of Double Strata Ground on Soft Clay Layers (연약점토층위 이층지반 지표면 재하시 지중응력 특성연구)

  • Lim, Jong-Seok;Lee, In-Hyung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.423-428
    • /
    • 2005
  • If the load of constructing vehicles during the construction work acts on the road or the ground surface on the soft ground, due to the excess stresses in soils the trafficability of the vehicles influences the constructing efficiency, constructing period and so on. Stress distribution in soils is the very important element to design and to solve the problems of settlement, safety of foundations and trafficability of constructing vehicle in civil engineering. This research represents the comparative estimation of the actual and theoretical measurement on the underground stress of outer layer for each soil after the observation of each top soil layer for its vertical and horizontal stress in (1)homogeneous sand ground (2) weak stratum with the sand soil (3) weak stratum with gravel of the soil model, and it also investigates the effect of subsidence of ground by the repeated load. The underground stress turn out to be different in the value of theoretical and actual measurement after the trial examination of model.

  • PDF

Numerical Study on the Stress-distribution Ratio of Grouting Pile for Reinforced Ground (지반보강용 그라우팅 말뚝의 응력분담비에 대한 수치해석적 연구)

  • Yi, Gyeong-Ju;Lee, Joon-Kyu;Zhang Weiwei;Song, Ki-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.2
    • /
    • pp.19-30
    • /
    • 2023
  • Underground structures, such as compacted sand piles applied as soft ground countermeasures, are analyzed for settlement and stability by the composite ground design method. The basic principle of the composite ground design method is the arching effect. The reinforcing effect of the pile is evaluated as the stress-distribution ratio. When applying grouting piles with elastic properties using the ground reinforcement method, the existing stress-distribution ratio was only considered when the pile was installed. This study shows that the method of applying the stress-distribution ratio applied in previous studies should be changed when the ground reinforcement pile is installed at an arbitrary location in the ground without raising it to the ground surface. When high strength jet routing is applied, the stress-distribution ratio (n) to the in-situ ground generally ranges from 30 to 50. However, if the pile is located far from the surface and the depth goes down to the boundary depth of the stress sphere, the stress-distribution effect rapidly decreases, and the stress-distribution ratio converges to 1.5.

Probabilistic Analysis of Liquefaction Cyclic Stress Ratio Considering Soil Variability (지반변동성을 고려한 액상화 진동전단응력비의 확률론적 해석)

  • Heo, Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.95-101
    • /
    • 2018
  • The objective of this study is to evaluate the liquefaction cyclic shear stress ratio considering the soil uncertainty. In this study, the probabilistic ground response analysis and the cyclic shear stress ratio analysis for the liquefaction potential evaluation are performed considering the soil variability. The statistical properties of input ground parameters were analyzed to investigate the parameters affecting the seismic response analysis. The Probabilistic analysis was carried out by Monte Carlo Simulation method. The ground response analysis was performed considering the soil variability and the probability distribution characteristics of the ground acceleration. The probability distribution of the peak ground acceleration by seismic characteristics was presented. The differences of liquefaction shear stress ratio results according to soil variability were compared and analyzed. The maximum acceleration of the ground by the deterministic method was analyzed to be overestimation of the ground amplification phenomenon. Also, the shear stress ratio was overestimated.

A study on residual stress distribution in surface grinding (평면연삭에서의 잔류응력 분포에 관한 연구)

  • 김경년;정재천;김기선
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.109-118
    • /
    • 1991
  • In this study, it is intended to investigate the effect of the grinding conditions such as table feed, down feed, cross feed of residual stress distribution. And this distribution is investigated upon the grinding direction and the its orthogonal direction at ground layers. The material is used carbon steel (SM20C) which usually used to motor axis. And in order to be considered as Bernoulli-Euler beam, the dimension of the specimen is appropriately designed. According as corroiding the ground surface, the residual stress layers are removed and strain which occured on account of unbalance of internal stress is detected by rosette-gate. Through A/D converter and computer, these values are saved and evaluated residual stress by stress-strain relation formula. Finally, these results are diagrammatized with Auto Cad. The results obtained are as follows. As the depth from the ground surface increases in grinding direction and its orthogonal direction, tensile residual stress exists in the surface, and subsequently it becomes compressive residual stress as it goes downward. As the table feed, the cross feed and the down feed increase, maximum residual stress is transformed form the tensile to the compressive.

  • PDF

Evaluation of Stress Distribution Ratio According to Clay Ground Condition and Stone Column Characteristics (점토지반 조건 및 쇄석말뚝 특성에 따른 응력분담비 산정)

  • Kim, Dong-Eun;Park, Hyun-Il;Lee, Seung-Rae;You, Sang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.35-41
    • /
    • 2008
  • Stone columns, one of the soft ground improvement techniques, are being used for not only accelerating consolidation but also increasing bearing capacity of soft grounds. In this study, in order to observe the stress distribution characteristics which are one of the important factors to estimate the settlement reduction of the soft ground, lab-scale experiments were performed in stone column reinforced clay ground. The stress distribution ratio of stone column decreased with the lapse of time after surcharge loading but increased as the stiffness of clay deposit increases. It shows that the modified Baumann and Bauer's solution, which is able to easily predict the stress distribution ratio of stone column reinforced soft ground, exhibits reasonable agreement with the measured data.

A Study on the Distribution Stresses beneath Loaded Ground Surface Area of Double Strata Ground on Soft Clay Layers (연약점토층위 이층지반 지표면 재하시 지중응력 특성연구)

  • Lee, In-Hyung;Lim, Jong-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.47-57
    • /
    • 2005
  • Stress distribution in soils is the very important element to design and to solve the problems of settlement, safety of foundations and trafficability of constructing vehicle in civil engineering. This research presents the comparative estimation of the actual and theoretical measurement on the underground stress of outer layer for each soil after the observation of each top soil layer fur its vertical and horizontal stresses in (1) homogeneous sand ground (2) weak stratum with the sand soil (3) weak stratum with gravel of the soil model, and it also investigates the effect of subsidence of ground by the repeated load. The underground stresses fumed out to be different in the value of theoretical and actual measurement after the trial examination of model. This study has the purpose of suggesting the better construction method of running equipment on weak stratum by comparing the estimated value of trial experiment and theory on underground stress of the weak ground surface area and of raising up the necessity of the continuous research hereafter.

A Study on the Stress Distribution in Soil According to the Composition of the Soil Layer in Case of Surface Loading (지표면 재하시 토층구성에 따른 지중응력분포에 관한 연구)

  • Lim, Jong-Seok;Jung, Sang-Kyun;Ha, Hyuk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.510-516
    • /
    • 2005
  • This research aims to verify the stress distribution in soil according to the composition of the soil layer in case of surface loading. For this purpose, loading tests with measurement of stresses in the soil on four kinds of layered model ground in laboratory were performed. Those are (1)homogeneous sand, (2)gravel underlain by sand, (3)sand underlain by clay and (4)gravel underlain by clay. Test results are compared and analysed for the compositions of the soil layers. based on the results obtained, it is found that the larger the difference of the strengths of upper and lower layer is, the smaller the stress in the soil in case of surface loading is.

  • PDF

Urban Excavation - Induced Ground Movement in Water Bearing Ground Using Stress-pore Pressure Coupled Analysis (응력 -간극수압 연계해석을 이용한 흙막이 굴착시 지하수저하에 따른 지반침하에 관한 연구)

  • Choi, Go-Ny;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.5
    • /
    • pp.17-31
    • /
    • 2011
  • This paper presents the results of a numerical investigation on the behavior of earth retaining wall system with emphasis on the groundwater lowering. Using the 2D stress-pore pressure coupled analysis, the effects of ground excavation and groundwater interaction were examined using wall horizontal deformation, ground surface movement, plastic strain pattern, effective stress distribution and axial stress of strut. In addition, based on the results from a parametric study on a wide range of soil profile and initial ground water table level, the ranges of wall displacement and ground deformation were suggested quantitatively.

A Study on the Stress Distribution of Steel Water Pipes(II) - Characteristics of Stress Distribution by External Forces and PWHT - (상수도용 도복장간관의 용접 및 외부하중에 의한 응력 특성에 관한 연구(II) - 복합외부하중 및 후열처리에 따른 용접부의 응력분포 특성 -)

  • 윤석환;이승기;나석주;고명환
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.292-297
    • /
    • 2001
  • One of the major characteristics that affects the life of welded steel water pipes is the stress distribution caused by welding and external forces. Some studios have bean carried out on the residual stress of steel water pipes. But the results on the stress distributions by welding and complex external forces are rare, because real water pipes operate under the ground and many kinds of external forces act simultaneously on the joints. To understand the complex stress distributions of welded joints, therefore predictions by numerical or analytic methods are required. In this study, temperature and stress distributions in steel water pipes produced by welding are predicted by a three-dimensional finite element method(FEM). Based on these results, stress distributions by welding and complex external forces are evaluated by adopting the same numerical method. The influence of some post weld heat treatments on residual stress distributions is also investigated.

  • PDF

The Coefficients of Variation Characteristic of Stress Distribution in Silty Sand by Probabilistic Load (확률론적 하중에 따른 실트질 모래지반 내 지중응력의 변동계수 특성)

  • Bong, Tae-Ho;Son, Young-Hwan;Kim, Seong-Pil;Heo, Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.77-87
    • /
    • 2012
  • Recently, Load and Resistance Factor Design (LRFD) based on reliability analysis has become a global trend for economical and rational design. In order to implement the LRFD, quantification of uncertainty for load and resistance should be done. The reliability of result relies on input variable, and therefore, it is important to obtain exact uncertainty properties of load and resistance. Since soil stress is the main reason causing the settlement or deformation of ground and load on the underground structure, it is essential to clarify the uncertainty of soil stress distribution for accurately predict the uncertainty of load in LRFD. In this study, laboratory model test on silty sand bed under probabilistic load is performed to observe propagation of upper load uncertainty. The results show that the coefficient of variation (COV) of soil stress are varied depending on location due to non-linear relationship between upper load increment and soil pressure increment. In addition, when the load uncertainty is transmitted through ground, COV is decreased by damping effect.