• Title/Summary/Keyword: Ground potential

Search Result 1,123, Processing Time 0.035 seconds

A Method of Simulating the Frequency-dependent Ground Impedance of Counterpoises (매설지선의 접지임피던스의 주파수의존성에 대한 모사기법)

  • Lee, Bok-Hee;Shin, Hee-Kyung;Seong, Chang-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.73-79
    • /
    • 2012
  • A counterpoise is commonly employed in grounding systems installing near the ground surface of low resistivity soils and radial-type counterpoises are used in the limited space. Recently some studies on the evaluation of ground impedance of paralleling ground electrodes have carried out, but the data for providing the frequency-dependent ground impedances considering potential interferences are not yet sufficient. In order to provide the information about the design of grounding systems for surge protection, the simulations of the frequency-dependent ground impedance of various shaped counterpoises are carried out by using the distributed parameter circuit model including the effect of potential interferences. This paper presents the theoretical simulations and actual experiments of the frequency-dependent ground impedance of paralleling and 3 or 4-arms star counterpoises. The accuracy of the simulation methodology is examined by the comparison with the measured results, and the results show a good agreement between the simulation and the experiment.

Analysis for Ground Impedance Measurement Influenced by Distance of Current Probe and Frequency (접지임피던스 측정에 관한 전류보조전극 거리 및 주파수의 영향 분석)

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Kim, Dong-Ook;Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Hyang-Kon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.289-292
    • /
    • 2009
  • This paper describes the analysis for ground impedance measurement influenced by distance of current probe and frequency using the fall-of-potential method and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position of auxiliary probes. In order to analyze the effects of ground impedance due to the distance of the current probe and frequency, ground impedances were measured in case that the distance of current probe was located from 5[m] to 20[m] and the measuring frequency was ranged in 55[Hz], 128[Hz], 342[Hz], and 513[Hz]. The results could be help to determine the position of current probe when the ground impedance was measured at grounding system.

  • PDF

Inductive Coupling Analysis of Ground Impedance on Parallel Orientation of Current and Potential Conductors (전류 및 전위 측정선의 평행배치에서 접지임피던스 상호유도 분석)

  • Cho, Sung-Chul;Eom, Ju-Hong;Lee, Tae-Hyung
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1470-1471
    • /
    • 2007
  • The mutual coupling between the current and potential measuring wires makes serious effect on the measurement of the ground impedance. For analyzing the effect of mutual coupling, we compared the ground impedance measured on site with the ground impedance calculated with MATLAB. When the parallel length is 10 [m], the measured ground impedance is similar with the calculated ground impedance. As the parallel length is extended over 10 [m], the error between measured ground impedance and calculated ground impedance is also increased on a large scale. We analyzed the mutual coupling by the frequency and present the inaccuracy of ground impedance quantitatively.

  • PDF

A Case study of Ground Treatment for Container Terminal Site Formation with Full Dredging and Replacement Method (완전준설 치환공법에 의한 컨테이너 부지조성 사례)

  • Hong, Eui;Sim Dong-Hyun
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.235-247
    • /
    • 2006
  • A ground treatment work for Hongkong container terminal yard is reported as a case study of site formation work with full dredging and replacement method. Ground treatment work adopting surcharge and deep compaction (vibroflotation) were applied to improve the sand creep potential. The sand creep parameter of 0 25% was assumed in design stage and improved up to 0.05% and 0.02% after surcharge and deep compaction respectively

  • PDF

Calculation Method of Transient Potential Rises of Horizontal Ground Electrodes Depending on Injection Point of the Ground Current (접지전류의 입사점에 따른 정보통신설비용 수평접지전극의 과도전위상승 계산 방법)

  • Ahn, Chang-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.197-203
    • /
    • 2014
  • When the lightning current is injected to the ground system of information and communication facilities, analysis of the transient potential rise in the ground system is one of main factors to effectively design the ground system. The performance of grounding systems is normally estimated with the grounding impedance and the transient potential rise which represents the electrical characteristics of the grounding system. The method for calculating the grounding impedance depending on the injection point of the lightning current was proposed. The delta-gap source model was proposed to calculate the grounding impedance in the case that the lightning current is injected to the center of the horizontal ground electrode. A new program which is possible to apply the frequency-dependent soil parameters using the Debye model was developed, because a commercial program for analyzing the performance of the grounding system can not apply to the frequency-dependent soil parameters. The experiment was carried out to confirm the availability of the simulation results with the same condition. Finally, the transient potential rises of a horizontal ground electrode depending on the lightning current waveforms were analyzed by using the results of the grounding impedance which is associated with the frequency-dependent soil parameters.

Measurement Error Analysis of Ground Resistance Using the Fall-of-Potential Method According to the Locations of Auxiliary Probes (전위강하법에 의한 접지저항 측정시 보조전극의 위치변화에 따른 오차 분석)

  • Kim, Dong-Woo;Gil, Hyoung-Jun;Kim, Dong-Ook;Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Hyang-Kon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.222-231
    • /
    • 2010
  • This paper presents numerical analysis of measurement errors of ground electrode using the fall-of-potential method. In order to analyze ground resistance error according to the positions of auxiliary probes, firstly, national and international standards were researched. Secondly, numerical ground resistance error of hemispheric electrode was analyzed according to the locations of auxiliary probes and the angle between probes. Then, error-reduced positions of auxiliary probes were shown according to the distance to auxiliary current probe versus ground electrode size. Finally, error compensation method was presented. The results presented in this paper provide useful information regarding ground resistance error of alternative positions of auxiliary probes in case that the auxiliary probes could not be located at the proper position in such cases as there are buildings, roadblock or underground metallic pipe at that position.

Evaluation of Errors Due to Earth Mutual Resistance in Measuring Ground Impedance of Vertically-driven Ground Electrode (수직 접지전극의 접지임피던스 측정에서 도전유도에 의한 오차 평가)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Lee, Bok-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1778-1783
    • /
    • 2009
  • Ground impedance for the large grounding system is measured according to the IEEE Standard 81.2 which is based on the revised fall-of-potential method of installing auxiliary electrode at a right angle. When the auxiliary electrodes are located at an angle of $90^{\circ}$, the ground impedance inevitably includes the error due to earth mutual resistance. In this paper, in order to accurately measure the ground impedance of vertically-driven ground electrodes, error rates due to earth mutual resistance are evaluated by ground resistance and ground impedance measuring devices and compared with calculated values. As a result, the measured results are in good agreement with the computed results considering soil layer with different resistivity. The error rates due to earth mutual resistance decrease with increasing the length of ground electrode in the case that the ratio of the distance between the ground rod to be measured and the auxiliary electrodes to the length of ground electrode(D/L) is same. The ground impedance should be measured at the minimum distance between the auxiliary electrodes that will have an estimated measurement accuracy due to earth mutual resistance.

Extension of Self-organization for Swarm Systems to Three Dimensions (스웜시스템을 위한 자기조직화의 3D 확장)

  • Kim, Jae-Hyun;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.489-496
    • /
    • 2010
  • In this paper, a self-organization framework for swarm systems in three dimensions is presented. The framework uses artificial potential functions(APFs) to direct the robots toward the goal as well as to keep them in a swarm system. This research extends conventional APFs used for self-organizations in two dimension environment to three dimensions. In three dimension environment, the ground potential for the boundary surfaces that commonly appear in three dimension environments is proposed. Accordingly, the comparison between the paths without and with the ground potentials shows the necessity and effect of ground potentials. Extensive simulations are given to show the effectiveness of the extended potentials and various properties in three dimension environments.

Transient Ground Impedance of Small-sized Needle-rod Electrodes due to Underground Soil Discharge (토양의 지중방전에 따른 소형 침봉전극의 과도접지임피던스)

  • Lee, Tae-Hyung;Cho, Sung-Chul;Eom, Ju-Hong;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.211-215
    • /
    • 2008
  • This paper deals with the transient ground impedance of small-sized needle-rod installed in a test field, Impulse voltage generator was used to inject lightning impulse on a ground electrode and modified fall-of potential method was proposed to measure the high ground potential rise. Transient ground impedance was analysed with impedance curve and I-V curve as respects the resistivity of soil. Soil ionization near the ground electrode is activated in high resistivity soil and have an effect on the reduction of transient ground impedance significantly.

  • PDF

Analysis of Transient Potential Rises of Horizontal Ground Electrodes Considering the Frequency-Dependent of Soil (토양의 주파수의존성을 고려한 정보통신설비용 수평접지전극의 과도전위상승 분석)

  • Ahn, Chang Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.147-153
    • /
    • 2016
  • The lightning protection of information and communication facilities is very important factor to improve a reliability of the action of these equipment. Especially the transient potential rise of ground electrode being injected with the lightning current is to be a basic data of the dielectric strength for both power and communication facilities so that more accurate analysis should be required. The transient potential rise can be calculated from the ground impedance and the ground impedance is strongly dependent upon the shape of the ground electrode and the frequency-dependence of soil. The Debye's equation which is able to calculate the characteristics of dielectrics is used to analyze the frequency-dependent of soil. Also, the method to calculate the transient potential rise from the ground impedance is specified in this paper. In order to analyze the transient potential rise resulting from calculations with Debye's equation, TLM(transmission line method) and case of ${\rho}$(resistivity)-constant are simulated, respectively. The length of a horizontal ground electrode is 30 m and simulations were performed at 10, 100, $1000{\Omega}{\cdot}m$ with the standard lightning current waveform. In result, the transient potential rise of horizontal ground electrode calculating with Debye's equation is lower than it of other models.