• Title/Summary/Keyword: Ground overcurrent

Search Result 22, Processing Time 0.032 seconds

Fault Detection Technique in Railway High Voltage Distribution Lines using Wavelet Transform (웨이브렛 변환을 이용한 철도 고압배전선로의 고장검출기법)

  • Jung Ho-Sung;Han Moon-Seob;Lee Chang-Mu;Kim Joorak;Lee Han-Min
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1274-1279
    • /
    • 2004
  • This paper proposes technique to detect ground fault in railway high voltage distribution lines. Overcurrent relay technique is widely used for detecting one line ground fault that occurs most frequently in railway high voltage distribution lines. However, ground fault in distribution line is usually high impedance fault with arc. Because the fault current magnitude measured in substation is very small, the conventional overcurrent relay can't detect the high impedance ground fault. Therefore this paper proposes the advanced technique using wavelet transform. It extracts D1 component from fault signals and detects fault comparing magnitude of D1 component in each phase. To evaluate this proposed technique, we model distribution system using PSCAD/EMTDC and extract various fault data. In conclusion this technique can detect ground fault including high impedance fault regardless of fault distance, fault impedance etc.

  • PDF

A Study on the Harmonics Effect of Disc-Type Over Current Ground Relay for Emergency Generator Protection (비상발전기 보호용 원판형 지락과전류계전기의 고조파영향에 관한 연구)

  • Kim, Kyung-Chul;Kho, Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.6
    • /
    • pp.58-62
    • /
    • 2015
  • When an emergency generator is running, it supplies the power for critical loads. Generator protection requires the consideration of many abnormal conditions that may occur with generators include overvoltages and ground faults. Modern day power systems create harmonics within the electrical network that can have an impact upon the associated protective system. This paper focuses on the analysing of the cause and development of a solution for the malfunction of induction disc type overcurrent ground relay by generation of harmonics during emergency generator operation.

Development of Ground Fault Protective Relaying Schemes for DC Traction Power Supply System (DC 급전시스템의 지락보호계전시스템 개발)

  • Chung Sang-Gi;Jeong Rag-Gyo;Cho Hong-Sik;Lee Ahn-Ho;Kwon Sam-Young
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.9
    • /
    • pp.427-433
    • /
    • 2005
  • In DC tracking power supply system, ground faults are currently detected by the potential relay, 64P. Though 64P relay detects ground fault, it cannot Identify the faulted region which causes long traffic delays and safety problem to passengers. Two new ground fault protective relay schemes that can identify the faulted region are presented in this paper. One is bus differential protective relay and the other is ground overcurrent protective relay. Both type of relays is similar in principle to the ordinary bus differential protective relay and the ground overcurrent relay used in other power system. In DC traction power supply system, since it is ungrounded, ground fault current is not big enough to operate those relays. To solve the problem, a current control device, called device 'X', is newly introduced in both system, which enables large amount of ground fault current flow upon the positive line to ground fault. Algorithms for these relays are developed and their validity are verified by EMTP simulation.

Comparison and Analysis of Domestic and Foreign Standard for electrical equipment installation of amusement park and ride (유원시설 전기설비 설치에 대한 국내외 규정 비교 분석)

  • Kim, Gi-Hyun;Kim, Chong-Min;Kim, Han-Sang
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.378-382
    • /
    • 2004
  • This paper gives information which is applied to install the electrical equipment of amusement park and ride. For analyzing the standard of electrical equipment installation, we research the related regulation of National Electrical Code(2002), IEC 60364-series and Technical standards for Electrical facilities of internal standard. Among electrical equipments of amusement park and ride, especially we study the transformer vaults, overcurrent protection and ground protection of electrical equipment. So we the furnished the installation information of transformer vaults, overcurrent and ground protection at amusement park and ride.

  • PDF

A New Scheme to Improve High Impedance Fault Detection Capability Using Directional Over-Current Ground Relay (방향지락과전류계전기를 이용한 고저항지락사고 검출능력의 향상방안)

  • Lee, Seung-Jae;Lim, Jong-Yun;Kim, Il-Dong;Han, Kyoung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1000-1002
    • /
    • 1997
  • In this paper we proposes a scheme which can improve the detecting capability of the high impedance fault of the conventional distance relaying. It utilizes the directional ground overcurrent relay called HIFR together with the distance relay in order to secure the security and selectivity.

  • PDF

Hybrid Control and Protection Scheme for Inverter Dominated Microgrids

  • Xu, Xiaotong;Wen, Huiqing;Jiang, Lin;Hu, Yihua
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.744-755
    • /
    • 2017
  • With the high penetration of various sustainable energy sources, the control and protection of Microgrids has become a challenging problem considering the inherent current limitation feature of inverter-based Distributed Generators (DGs) and the bidirectional power flow in Microgrids. In this paper, a hybrid control and protection scheme is proposed, which combines the traditional inverse-time overcurrent protection with the biased differential protection for different feeders with different kinds of loads. It naturally accommodates various control strategies such as P-Q control and V-f control. The parameter settings of the protection scheme are analyzed and calculated through a fast Fourier transform algorithm, and the stability of the control strategy is discussed by building a small signal model in MATLAB. Different operation modes such as the grid-connected mode, the islanding mode, and the transitions between these two modes are ensured. A Microgrid model is established in PSCAD and the analysis results show that a Microgrid system can be effectively protected against different faults such as the single phase to ground and the three phase faults in both the grid-connected and islanded operation modes.

Power Control and Ground Fault Simulations for a Distribution System with a Fuel Cell Power Plant

  • Hwang, Jin-Kwon;Choi, Tae-Il
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.7
    • /
    • pp.9-19
    • /
    • 2010
  • Fuel cell (FC) distributed generation (DG) is gradually becoming more attractive to mainstream electricity users as capacity improves and costs decrease. New technologies including inverters are becoming available to provide a uniform standard interconnection of DGs with an electric power system. Some of the operating conflicts and the effect of DG on power quality are addressed and investigated through simulations on a real distribution network with an FC power plant. The results of these simulations have proved load tracking capability following the real and reactive power change of the load and have shown the flow of overcurrent from an FC power plant during the ground fault of a distribution line.

A Study on the Algorithm for Fault Discrimination in Transmission Lines using Advanced Computational Intelligence(ACI) (ACI 기법을 이용한 송전선로 고장 종류 판별에 관한 연구)

  • Park Jae Hong;Lee Jong Beom
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.619-621
    • /
    • 2004
  • This paper presents the rapid and accurate algorithm for fault discrimination in transmission lines. When faults occur in transmission lines, fault discrimination is very important. If high impedance faults occur in transmission lines, it cannot be detected by overcurrent relays. The method using current and voltage cannot discriminate high impedance fault. Because of this reason this paper uses voltage and zero sequence current, and the proposed algorithm uses fuzzy logic method. This algorithm uses voltage and zero sequence current per period in case of faults. Single line ground fault and three-phase fault can be detective using voltage. Two-line ground fault and line to line fault and high impedance can be detected using zero sequence current. To prove the performance of the algorithm, it test algorithm with signal obtained from ATPDraw simulation.

  • PDF

An Overcurrent Analysis in Neutral Line and Algorithm to Prevent Malfunction of Relay in Distributed Generations (분산전원 연계선로에서 지락고장시 중성선의 과전류 해석 및 보호계전기의 새로운 알고리즘)

  • Shin, Dong-Yeol;Kim, Dong-Myung;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1916-1922
    • /
    • 2009
  • Introducing distributed generators(DGs) to utility distribution system can cause malfunction of relay on the grid when ground faults or severe load unbalances are occurred on the system. Because DGs interconnected to the grid can contribute fault currents and make bidirectional power flows on the system, fault currents from DGs can cause an interference of relay operation. A directional over current relay(DOCR) can determine the direction of power flow whether a fault occurs at the source side or load side through detecting the phases of voltage and current simultaneously. However, it is identified in this paper that the contributed fault current(Ifdg) from the ground source when was occurred to contribute single-line-to-ground(SLG) fault current, has various phases according to the distances from the ground source. It means that the directionality of Ifdg may not be determined by simply detecting the phases of voltage and current in some fault conditions. The magnitude of Ifdg can be estimated approximately as high as 3 times of a phase current and its maximum is up to 2,000 A depending on the capacity of generation facilities. In order to prevent malfunction of relay and damage of DG facilities from the contribution of ground fault currents, Ifdg should be limited within a proper range. Installation of neutral ground reactor (NGR) at a primary neutral of interconnection transformer was suggested in the paper. Capacity of the proposed NGR can be adjusted easily by controlling taps of the NGR. An algorithm for unidirectional relay was also proposed to prevent the malfunction of relay due to the fault current, Ifdg. By the algorithm, it is possible to determine the directionality of fault from measuring only the magnitude of fault current. It also implies that the directionality of fault can be detected by unidirectional relay without replacement of relay with the bidirectional relay.

A Study on the Establishment of Preventive Measures for Electric Fires Using the 4M Technique (4M 기법을 활용한 전기화재 예방대책 수립 연구)

  • Oh, Teakhum;Park, Chanseok
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.23-29
    • /
    • 2021
  • The purpose of this study is to reduce the probability of occurrence of electric fires as a preemptive preventive measure, and to strengthen the capability of preventing electric fires by strengthening the cooperative function between electric fire-related departments and establishing a cooperative system. In this study, the general aspects of electric fires were identified by reviewing the literature such as ignition mechanisms of electric fires. And the major electrical fires that occurred in the last 10 years were classified into ignition factors (short circuit, overload/overcurrent, and earth leakage/ground fault) and ignition sources (wiring/wiring appliances, electrical equipment/household appliances). And the 4M technique was used to analyze the potential causes of ignition at the fire site and to suggest preventive measures. In the case In this study, out of 48 electrical fires in the past 10 years, 16 short-circuit fires, 3 overload/overcurrent fires, 3 short-circuit and earth fault fires, 16 fires in wiring/wiring appliances, and 10 fires in electrical equipment/home appliances classified as cases. And prevention measures were presented in terms of human, machine, media, and management by using the 4M technique. For the preemptive prevention of electric fires, strengthening the compulsory electrical safety inspection and making it mandatory to report when new or expanding electric facilities, charging a fee for electric safety inspection for detached houses and granting benefits subject to inspection completion, improvement of the electric safety voluntary inspection table and safety indications; It was suggested as a policy to organize and operate electrical safety inspection personnel in a two-person team (mixed), establish a close work cooperation system with related organizations, and strengthen electrical safety education and publicity.