• Title/Summary/Keyword: Ground load

Search Result 1,467, Processing Time 0.258 seconds

Measurement of Retaining Tensile Load with the Relative Displacement Detector of Ground Anchors (상대변위측정기를 이용한 지반앵커의 보유인장력 측정)

  • Jeong, Hyeon-Sik;Han, Kwang-Suk;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.59-69
    • /
    • 2017
  • The tension load of the ground anchor inserted in the ground gradually changes over time. In this regard the change of the initial tension load is primarily decreased by the fixation condition of the fixing head and the mechanical characteristics of the tensile material. The subsequent additional tension load is a time-dependent loss mostly due to the fixing conditions of the bonded length and the surrounding ground properties of the field. In this paper, therefore, a measurement system using a relative displacement detector that can relatively easily measure the change of tension load is discussed. As a result of the review, it was confirmed that the results using the relative displacement detector are similar to those of the real scale model test, and it was also confirmed that similar results were obtained with the result of the pull-out test conducted on the ground anchors fixed to weathered rocks condition. In addition, a pull-out test was conducted on the test anchors whose initial tension load loss was relatively large and through this test pull-out behavior of the tension type ground anchors was verified.

Blocking for the Ground Vibration by a Trench due to Traveling Tilting Train (틸팅열차 주행시 방진구에 의한 지반진동차단)

  • 이종세;김희석;이은수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.68-75
    • /
    • 2004
  • In this paper a study on the reduction method of ground vibration by a french is carried out. The transmitted load into the ground which induces the ground vibration is computed through a study on the interaction between tilting car and the line. This load is applied into the numerical model which is one for a study on the reduction method of ground vibration by a trench. Then the numerical results is compared with the experimental results conducted in the previous study.

  • PDF

Experimental Study on the Ground Support Conditions of Pipe Ends in Single Span Pipe Greenhouse (단동파이프하우스의 지점조건 분석을 위한 실험 연구)

  • Lee, Suk-Gun;Lee, Jong-Won;Kwak, Cheul-Soon;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.188-196
    • /
    • 2008
  • Single span pipe greenhouses (pipe houses) are widely used in Korea because these simple structures are suitable for construction by farmers thus reducing labor cost. However, these pipe houses are very weak and frequently damaged by heavy snow and strong wind. Pipe house is constructed by pipe fabricator, which is anchored to the ground by inserting each pipe end into ground to $30\sim40cm$, so the ground support condition of pipe end is not clear for theoretical analysis on greenhouse structure. This study was carried out to find out the suitable ground support condition needed f3r structural analysis when pipe house was designed. The snow and wind loading tests on the actual size pipe house were conducted to measure the collapsing shape, displacement and strain. The experimental results were compared with the structural analysis results for 4 different ground support conditions of pipe ends(fixed at ground surface, hinged at ground surface, fixed under ground and hinged under ground). The pipe house under snow load was collapsed at the eaves as predicted, and the actual strain at the windward eave and ground support under wind load was larger than that under snow load. The displacement was the largest at the hinged support under ground, followed by the hinged at ground surface, the fixed under ground and then the fixed at ground surface independent of displacement direction and experimental loading condition. The experimental results agreed most closely with the results of theoretical analysis at the fixed condition under ground among 4 different ground support conditions. As the results, it was recommended that the pipe end support condition of single span pipe greenhouse was the fixed under ground for structural analysis.

Vibration Analysis on the Ground by 2D FEM (2차원 유한요소법을 이용한 지반의 진동에 대한 동적응답해석)

  • 황성춘;박춘식;정성교
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.365-370
    • /
    • 1999
  • In this paper, dynamic response analysis on the ground movement applied traffic load by 2D finite element procedure has been studied. In particular, The paper deal with pointing acceleration method that applied AFIMEX Code as like 2D-FLUSH using equivalent linear method. As the result, it is found that dynamic response analysis by pointing acceleration method expressed ground movement by traffic load exactly.

  • PDF

Aircraft Load Monitoring System Development & Application to Ground Tests Using Optical Fiber Sensors (광섬유 센서를 사용한 항공기용 하중 모니터링 시스템 개발과 지상시험 적용)

  • Park, Chan Yik;Ha, Jae Seok;Kim, Sang Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.8
    • /
    • pp.639-646
    • /
    • 2017
  • In this paper, a new load monitoring system for military aircraft is introduced. This system consists of sensors, an onboard device and an ground analysis equipment. The sensors and onboard device are mounted on the aircraft and the ground analysis equipment is operated on the ground. Through this system, structural static load can be estimated with flight parameters and structural responses can be measured by sensors due to static load, dynamic load and unexpected events. Especially, optical fiber sensors with mutiplexing capability are utilized. The onboard device was specially designed for complying the requirements of relevant military specifications and was verified through a series of the environment tests. This system was used and evaluated through ground structural tests before flight tests. In the near future, this system will be applied to military aircraft as a structural load monitoring system after flight test evaluation.

Ground vibrations due to underground trains considering soil-tunnel interaction

  • Yang, Y.B.;Hung, H.H.;Hsu, L.C.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.157-175
    • /
    • 2008
  • A brief review of the research works on ground vibrations caused by trains moving in underground tunnels is first given. Then, the finite/infinite element approach for simulating the soil-tunnel interaction system with semi-infinite domain is summarized. The tunnel is assumed to be embedded in a homogeneous half-space or stratified soil medium. The train moving underground is modeled as an infinite harmonic line load. Factors considered in the parametric studies include the soil stratum depth, damping ratio and shear modulus of the soil with or without tunnel, and the thickness of the tunnel lining. As far as ground vibration is concerned, the existence of a concrete tunnel may somewhat compensate for the loss due to excavation of the tunnel. For a soil stratum resting on a bedrock, the resonance peak and frequency of the ground vibrations caused by the underground load can be rather accurately predicted by ignoring the existence of the tunnel. Other important findings drawn from the parametric studies are given in the conclusion.

Behaviour of Ground Anchor According to Period Characteristic of Seismic Load Using Numerical Analysis (수치해석을 통한 지진하중의 주기특성에 따른 그라운드 앵커의 거동)

  • Oh, Dong-Wook;Jung, Hyuk-Sang;Yoon, Hwan-Hee;Lee, Yong-Joo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.635-650
    • /
    • 2018
  • Many people have been recognized that the Korean Peninsula is no longer safe area from the earthquake by the recent earthquakes occurred in the country. The earthquakes that occurred at Pohang and Gyeongju appeared differently from them considered in the seismic design and researches on the seismic design method have been also conducted by many researchers. Studies on seismic loads are mainly focused on existing superstructures, and research involving them has been actively carried out in reality. However, paper regarding structural stability of reinforcement from seismic load such as soil-nails, rock-bolts, ground anchors which were constructed to ensure stability of serviced structure have been published rarely. In this study, ground anchor been effected by static load and seismic load which is settled in the weathered rock is analyzed. Results for static load are obtained from field test and seismic load is from numerical analysis. In this study, the behavioral characteristics of the ground anchor were analyzed by numerical analysis in case of seismic loading based on the result of the in-situ tensile test of the ground anchor settled weathered rock. As a result, settlement of concrete block due to application of tension force for ground anchor occurred as well as following loss of axial force for ground anchor. Also, as bond length and period of seismic load are longer, increasement of displacement is greater.

The behavior of tunnel and ground according to the loading of building construction on the ground (터널 상부 지반에 시공되는 건물 하중에 따른 터널 및 주변지반의 거동)

  • Cha, Seok-Kyu;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.4
    • /
    • pp.731-742
    • /
    • 2018
  • Recently, the construction of the urban area has been rapidly increasing, and the excavation work of the ground has been frequently performed at the upper part of the existing underground structure. Especially, when the structure is constructed after the excavation of the ground, the loading and unloading process is repeated in the lower ground of the excavation so that it can affect existing underground structures. Therefore, in order to maintain the stability of the existing underground structure due to the excavation of the ground, it is necessary to accurately grasp the influence of the excavation and the structure load in the adjoining part. In this study, the effects of the ground excavation and the new structure load on the existing tunnel were investigated by large - scale experiment and numerical analysis. For this purpose, a large model tester with a size reduced to 1/5 of the actual size was constructed, and model tests and numerical analyzes were carried out to investigate the effects of the excavation of the body ground by maintaining the distance between the excavation floor and the tunnel ceiling constant, The impacts were identified. As a result of the study, it was confirmed that the deeper the excavation depth, the larger the influence on the existing tunnel. At the same distance, it was confirmed that the tunnel displacement increased with the increase of the building load, and the ground stress increased up to 2.4 times. From this result, it was confirmed that the effect of the increase of the underground stress on the existing tunnel is affected by the increase of the building load, and the influence of the underground stress is decreased from the new load width above 3.0D.

A Study on the Stress Distribution beneath Loaded Ground Surface Area of Double Strata Ground on Soft Clay Layers (연약점토층위 이층지반 지표면 재하시 지중응력 특성연구)

  • Lim, Jong-Seok;Lee, In-Hyung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.423-428
    • /
    • 2005
  • If the load of constructing vehicles during the construction work acts on the road or the ground surface on the soft ground, due to the excess stresses in soils the trafficability of the vehicles influences the constructing efficiency, constructing period and so on. Stress distribution in soils is the very important element to design and to solve the problems of settlement, safety of foundations and trafficability of constructing vehicle in civil engineering. This research represents the comparative estimation of the actual and theoretical measurement on the underground stress of outer layer for each soil after the observation of each top soil layer for its vertical and horizontal stress in (1)homogeneous sand ground (2) weak stratum with the sand soil (3) weak stratum with gravel of the soil model, and it also investigates the effect of subsidence of ground by the repeated load. The underground stress turn out to be different in the value of theoretical and actual measurement after the trial examination of model.

  • PDF

Experimental study on the influence of the ground surface slope on the longitudinal load transfer in shallow tunnel (얕은 터널에서 지표경사가 종방향 하중전이에 미치는 영향에 대한 실험적 연구)

  • Yim, Il Jae;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.887-903
    • /
    • 2017
  • Lots of shallow tunnels are constructed in the mountainous areas where the stress distribution in the ground around tunnel is not simple, also the impact of stress conditions on the longitudinal load transfer characteristics is unclear. The tunnel construction methods and the ground conditions would also affect the longitudinal load transfer characteristics which would be dependant on the displacement patterns of tunnel face. Therefore, in this study, the slope of the ground surface was varied in $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, and the longitudinal load transfer depended on the deformation conditions of tunnelface (that were maximum deformation on the top, constant deformation, and maximum deformation on the bottom), and the stress distribution at tunnelface. As results, when the tunnelface deformed, the earth presure on the tunnelface decreased and the load at tunnel crown increased. The load transferred on the crown was influenced by the earth presure on tunnel face. Smaller load would be transfered to the wide areas when the slope of ground surface decreased. When the slope of ground surface became larger, the longitudinal load transfer would be smaller and would be concentrated on tunnelface, In addition, the shape of the transferred load distribution in the longitudinal direction was dependant on the deformation shape of tunnelface. The deformation shape of tunnelface and stress conditions in longitudinal sections would affect the shape and the magnitude of the load transfer in the longitudinal directions.