• Title/Summary/Keyword: Ground load

Search Result 1,463, Processing Time 0.023 seconds

A study on the characteristics of multi load transfer ground anchor system (다중정착 지반앵커의 하중전달 특성에 관한 연구)

  • Kim, Ji-Ho;Jeong, Hyeon-Sic;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.25-50
    • /
    • 2014
  • In order to identify a load transfer mechanism of ground anchors, the behavior of multi load transfer ground anchor systems was investigated and compared with those of compression type anchors and tension type anchors. Large scale model tests were performed and stress-strain relationships were obtained. The load transfer mechanism of ground anchors was also investigated in the field tests. Finally, numerical analyses to predict the load-displacement relationships of anchors were conducted. It is concluded that the load transfer characteristics of MLT anchors are mechanically much more superior in the pull-out resistance effect than those of existing compression and tension type anchors. From the results of research work, we could suggest that the max pull-out capacity of anchor capacity to each the soil condition. Also, the MLT anchors can be used to achieve both structural enhancement and economic construction in earth retaining or supporting structures.

Impact of adjacent excavation on the response of cantilever sheet pile walls embedded in cohesionless soil

  • Singh, Akshay Pratap;Chatterjee, Kaustav
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.293-312
    • /
    • 2022
  • Cantilever sheet pile walls having section thinner than masonry walls are generally adopted to retain moderate height of excavation. In practice, a surcharge in the form of strip load of finite width is generally present on the backfill. So, in the present study, influence of strip load on cantilever sheet pile walls is analyzed by varying the width of the strip load and distance from the cantilever sheet pile walls using finite difference based computer program in cohesionless soil modelled as Mohr-Coulomb model. The results of bending moment, earth pressure, deflection and settlement are presented in non-dimensional terms. A parametric study has been conducted for different friction angle of soil, embedded depth of sheet pile walls, different magnitudes and width of the strip load acting on the ground surface and at a depth below ground level. The result of present study is also validated with the available literature. From the results presented in this study, it can be inferred that optimum behavior of cantilever sheet pile walls is observed for strip load having width 2 m to 3 m on the ground surface. Further as the depth of strip load below the ground surface increases below the ground level to 0.75 times excavation height, the bending moment, settlement, net earth pressure and deflection decreases and then remains constant.

Shear Behavior between Ground and Soil-Nailing (지반과 쏘일네일링 사이의 전단거동에 관한 연구)

  • Seo, Hyung-Joon;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.5-16
    • /
    • 2014
  • Soil-nailing has two main resistance factors: skin friction between ground and grouting; and tension load of reinforced material. These two factors will affect the load-displacement curve when performing soil-nailing pullout tests. The purpose of this paper is to figure out the shear behavior between ground and soil-nailing focusing on the net load-displacement behavior during soil-nailing pullout tests. Firstly, the net load-displacement curve between ground and grouting is estimated theoretically. Then, in-situ pullout load tests are performed on various ground conditions to obtain the load-displacement curve occuring between ground and grouting. Since the measured shear displacement includes elongation of the reinforced material (steel nails), the net load-displacement curve can be obtained by subtracting the elongation magnitude of steels from the measured displacement. It was found that the measured net load-displacement curve matches reasonably well with the theoretically estimated curve.

A Study on Load Transfer of Ground Anchors (그라운드 앵커의 하중전이 현상에 대한 연구)

  • 김낙경;박완서
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.441-448
    • /
    • 1999
  • The load distribution in a ground anchor is very complex because it involves three different materials(soil, grout, and steel), which sometimes act as composite sections (bonded length) or separately (unbounded length). Therefore it is very hard to understand load transfer mechanism on the anchor. In order to understand the load transfer, it is essential to consider the load distribution In the three different materials. On these purposes, full scale anchor test is planned on the geotechnical site at Sunkyunkwan University Prior to the test, modeling and analyses of the load transfer mechanism were performed on the data from the case histories.

  • PDF

Characteristic of a Soft Ground Behavior Subjected to Static and Dynamic Loads (A Study on the Model Test) (정하중 및 동하중이 작용하는 연약지반의 거동특성(비교모형실험))

  • Kim, Jong-Ryeol;Kang, Jin-Tae;Lee, Chi-Yeal;Part, Yong-Myun;Jeong, Jea-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.111-118
    • /
    • 2008
  • In the study a 2 dimensional model test was executed to grasp the effect of the taking load of equipments on the ground when improving a soft ground like dredging reclaimed ground. The static load and the dynamic load in the consolidated model ground was $0.02kg/cm^2,\;0.03kg/cm^2\;and\;0.04kg/cm^2$ respectively. After consolidating far two months by consolidation load of $0.02kg/cm^2,\;0.03kg/cm^2\;and\;0.04kg/cm^2$ respectively, the ultimate bearing capacity was $0.16kg/cm^2,\;0.19kg/cm^2,\;0.24kg/cm^2$ respectively. And the energy price of dynamic load test at the same point as the settlement of static load test indicated $E=336{\sim}945kg{\cdot}cm,\;E=252{\sim}780kg{\cdot}cm\;and\;E=323{\sim}727kg{\cdot}cm$ for each consolidation load. When the static load and the dynamic load operated at the same ground condition, the heaving quantity was bigger in the case of the dynamic load than in the case of the static load, and the horizontal displacement quantity the in the case of dynamic load was exhibited very deficiently compared to the quantity in the case of static load test.

Vertical load on a conduit buried under a sloping ground

  • Khan, Muhammad U.A.;Shukla, Sanjay K.
    • Geomechanics and Engineering
    • /
    • v.24 no.6
    • /
    • pp.599-610
    • /
    • 2021
  • Conduits are commonly installed below the ground for utility conveyance around the world. Vertical load on a buried conduit is an important parameter that needs to be known to ensure its safe design and installation. Consideration of soil arching in load calculations helps achieve a more realistic and efficient design. In the past, considering the arching effect, the design charts have been presented for use by practicing engineers to calculate the vertical load on the conduit buried below the level ground. There are currently no design charts for calculating the vertical load on the conduit buried under a sloping ground. In this paper, an attempt has been made to present the derivation of a generalized analytical expression considering that the soil mass overlying the conduit has a sloping face and the arching phenomenon takes place. The developed generalized expression has been used to present some design charts considering specific values of slope geometry, soil properties and burial depths. Furthermore, analytical results for specific soil parameters have been compared with the results extracted from a commercial software PLAXIS 2D, for a developed numerical model and an independent study.

Behavior of Variable Cross-Section Soft Ground Reinforced Foundation in Soft Grounds (연약지반에 적용된 변단면 연약지반보강기초의 거동분석)

  • Kim, Khi-Woong;Kim, Dong-Wook;Jo, Myoung-Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.89-96
    • /
    • 2016
  • Compressive axial behavior of the variable cross-section soft ground reinforced foundation is investigated from the field load test results at ${\bigcirc}{\bigcirc}$ construction site in Incheon city. Variable cross-section soft ground reinforced foundation is a type of partial-displacement pile formed by mixing bidding material with in situ soils to obtain a rigid and strong variable cross-section column in a relatively soft ground. The foundations are usually constructed as a group; however in this study, only single foundation was installed and tested under compressive axial load on foundation head. For the comparison of the variable cross-section soft ground reinforced foundation axial behavior, behavior of typical Pretensioned spun high strength concrete (PHC) pile constructed on a relatively soft ground near the surface was analyzed. It was concluded that variable cross-section soft ground reinforced foundation efficiently resists against axial load with sufficient stiffness and strength within a considerable range of axial load magnitude.

An Analysis Model of the Secondary Tunnel Lining Considering Ground-Primary Support-Secondary Lining Interaction (지반-1차지보재-2차라이닝의 상호작용을 고려한 터널 2차라이닝 해석모델)

  • 서성호;장석부;이상덕
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.107-114
    • /
    • 2002
  • It is the common practice to over design the reinforcement for the secondary tunnel lining due to the lack of rational insight into the ground loosening loads. and due to the conservative application of the empirical design methods. The main loads of the secondary lining are the ground Loosening loads and the ground water pressure, and the ground load is critical in the reinforcement design of the secondary lining in the case of drained tunnel. If the external load is absent around a tunnel, the reasons of the load far secondary tunnel lining are the deterioration of the primary supports such as shotcrete, steel rib, and rockbolts. Accordingly, the analysis method considering the ground-primary supports-secondary lining interaction should be required tar the rational design of the secondary tunnel lining. In this paper, the interaction was conceptually described by the simple mass-spring model and the load transfer from the ground and primary supports to the secondary lining is showed by the ground-primary supports-secondary lining reaction curves fur the theoretical solution of a circular tunnel. And also, the application of this proposed model to numerical analysis is verified in order to check the potential far the tunnel with the complex analysis conditions.

Design of the secondary tunnel lining using a ground-primary support-secondary lining interaction model

  • Chang, Seok-Bue;Seo, Seong-Ho;Lee, Sang-Duk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.109-114
    • /
    • 2003
  • It is the common practice to reinforce excessively the secondary tunnel lining due to the lack of rational insights into the ground loosening loads. The main load of the secondary lining for drained-type tunnels is the ground loosening. The main cause of the load for secondary tunnel lining is the deterioration of the primary support members such as shotcrete, steel ribs, and rockbolts. Accordingly, the development of the analysis model to consider the ground-primary supports-secondary lining interaction is very important for the rational design of the secondary tunnel lining. In this paper, the interaction is conceptually described by the simple mass-spring model and the load transfer from the primary supports to the ground and the secondary lining is showed by the characteristic curves including the secondary lining reaction curve for the theoretical solution of a circular tunnel. And also, the application of this model to numerical analysis is verified in order to review the potential tool for practical tunnel problems with the complex conditions like non-circular shaped tunnels, multi-layered ground, sequential excavation and so on.

  • PDF

Behavior of Geogrid-Reinforced Soil with Cyclic plate Load Test (반복 평판재하시험을 통한 지오그리드 보강지반의 거동 특성)

  • 신은철;김두환;이상조;이규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.285-292
    • /
    • 1999
  • The cyclic plate load test were peformed to determine the behavior of reinforced soft ground with multiple layers of geogrid. Five series of test were conducted with varying the soil profile conditions which including the ground level, type of soil, and the thickness of each soil layer. The plate load test equipment was slightly modified to apply the cyclic load. Based on the cyclic plate load test results, the bearing capacity ratio(BCR), subbase modules, shear modules, the elastic rebound ratio, and reinforcing parameters are presented.

  • PDF