• Title/Summary/Keyword: Ground fault

Search Result 738, Processing Time 0.033 seconds

Seismic and collapse analysis of a UHV transmission tower-line system under cross-fault ground motions

  • Tian, Li;Bi, Wenzhe;Liu, Juncai;Dong, Xu;Xin, Aiqiang
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.445-457
    • /
    • 2020
  • An ultra-high voltage (UHV) transmission system has the advantages of low circuitry loss, high bulk capacity and long-distance transmission capabilities over conventional transmission systems, but it is easier for this system to cross fault rupture zones and become damaged during earthquakes. This paper experimentally and numerically investigates the seismic responses and collapse failure of a UHV transmission tower-line system crossing a fault. A 1:25 reduced-scale model is constructed and tested by using shaking tables to evaluate the influence of the forward-directivity and fling-step effects on the responses of suspension-type towers. Furthermore, the collapse failure tests of the system under specific cross-fault scenarios are carried out. The corresponding finite element (FE) model is established in ABAQUS software and verified based on the Tian-Ma-Qu material model. The results reveal that the seismic responses of the transmission system under the cross-fault scenario are larger than those under the near-fault scenario, and the permanent ground displacements in the fling-step ground motions tend to magnify the seismic responses of the fault-crossing transmission system. The critical collapse peak ground acceleration (PGA), failure mode and weak position determined by the model experiment and numerical simulation are in relatively good agreement. The sequential failure of the members in Segments 4 and 5 leads to the collapse of the entire model, whereas other segments basically remain in the intact state.

An Overcurrent Analysis in Neutral Line and Algorithm to Prevent Malfunction of Relay in Distributed Generations (분산전원 연계선로에서 지락고장시 중성선의 과전류 해석 및 보호계전기의 새로운 알고리즘)

  • Shin, Dong-Yeol;Kim, Dong-Myung;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1916-1922
    • /
    • 2009
  • Introducing distributed generators(DGs) to utility distribution system can cause malfunction of relay on the grid when ground faults or severe load unbalances are occurred on the system. Because DGs interconnected to the grid can contribute fault currents and make bidirectional power flows on the system, fault currents from DGs can cause an interference of relay operation. A directional over current relay(DOCR) can determine the direction of power flow whether a fault occurs at the source side or load side through detecting the phases of voltage and current simultaneously. However, it is identified in this paper that the contributed fault current(Ifdg) from the ground source when was occurred to contribute single-line-to-ground(SLG) fault current, has various phases according to the distances from the ground source. It means that the directionality of Ifdg may not be determined by simply detecting the phases of voltage and current in some fault conditions. The magnitude of Ifdg can be estimated approximately as high as 3 times of a phase current and its maximum is up to 2,000 A depending on the capacity of generation facilities. In order to prevent malfunction of relay and damage of DG facilities from the contribution of ground fault currents, Ifdg should be limited within a proper range. Installation of neutral ground reactor (NGR) at a primary neutral of interconnection transformer was suggested in the paper. Capacity of the proposed NGR can be adjusted easily by controlling taps of the NGR. An algorithm for unidirectional relay was also proposed to prevent the malfunction of relay due to the fault current, Ifdg. By the algorithm, it is possible to determine the directionality of fault from measuring only the magnitude of fault current. It also implies that the directionality of fault can be detected by unidirectional relay without replacement of relay with the bidirectional relay.

Stochastic Strong Ground Motion Simulation at South Korean Metropolises' Seismic Stations Based on the 2016 Gyeongju Earthquake Causative Fault (2016년 경주지진 원인단층의 시나리오 지진에 의한 국내 광역도시 지진관측소에서의 추계학적 강진동 모사)

  • Choi, Hoseon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.233-240
    • /
    • 2021
  • The stochastic method is applied to simulate strong ground motions at seismic stations of seven metropolises in South Korea, creating an earthquake scenario based on the causative fault of the 2016 Gyeongju earthquake. Input parameters are established according to what has been revealed so far for the causative fault of the Gyeongju earthquake, while the ratio of differences in response spectra between observed and simulated strong ground motions is assumed to be an adjustment factor. The calculations confirm the applicability and reproducibility of strong ground motion simulations based on the relatively small bias in response spectra between observed and simulated strong ground motions. Based on this result, strong ground motions by a scenario earthquake on the causative fault of the Gyeongju earthquake with moment magnitude 6.5 are simulated, assuming that the ratios of its fault length to width are 2:1, 3:1, and 4:1. The results are similar to those of the empirical Green's function method. Although actual site response factors of seismic stations should be supplemented later, the simulated strong ground motions can be used as input data for developing ground motion prediction equations and input data for calculating the design response spectra of major facilities in South Korea.

Seismic Performance of Bridge with Pile Bent Structures in Soft Ground against Near-Fault Ground Motions (연약지반에 건설된 단일형 현장타설말뚝 교량의 근단층지반운동에 대한 내진성능)

  • Sun, Chang-Ho;An, Sung-Min;Kim, Jung-Han;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.137-144
    • /
    • 2019
  • For the structures near the seismogenic fault, the evaluation of seismic performance against near-fault ground motions is important as well as for design ground motions. In this study, characteristics of seismic behaviors and seismic performance of the pile-bent bridge constructed on the thick soft soil site with various weak soil layers were analyzed. The input ground motions were synthesized by the directivity pulse parameters for intra-plate regions. The ground motion acceleration histories of each layer were obtained by one-dimensional site response analysis. Each soil layer was modeled by equivalent linear springs, and multi-support excitations with different input ground motions at each soil spring were applied for nonlinear seismic analyses. The analysis result by the near-fault ground motions and ground motions matched to design spectra were compared. In case of the near fault ground motion input, the bridge behaved within the elastic range but the location of the maximum moment occurred was different from the result of design ground motion input.

DC Ground Fault Detection System for Photovoltaic Generation (태양광 발전용 직류 지락 검출장치)

  • Jang, Su-Jin;Lee, Jeong-Min;Kim, Wang-Moon;Goo, Tae-Hong;Suh, In-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.408-411
    • /
    • 2008
  • In this paper, a new DC ground fault detection system is proposed, which is suitable for photovoltaic power generation systems. The proposed ground fault systems is superposition of divide resistance and detection circuit. The proposed system has the characteristics of a simplified structure, reduced cost and volume compared with those of the conventional ground fault system for DC source. The operation principle of the proposed systems is described and verified by simulation result.

  • PDF

Response of the structures excited by the near fault ground motion (Near Fault Ground Motion에 의한 구조물의 거동 특성 연구)

  • Kim, Jae-Kwan;Kim, Jung-Han
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.42-46
    • /
    • 2005
  • Ground motions with the near fault effects are studied for the seismic design and the analysis of structures. The characteristics of the velocity pulse by the forward directivity are studied and the relations between velocity pulse and earthquake magnitude are investigated. The elastic response spectra of the near fault ground motion are compared with these of the far fault ground motion. And effects on the behaviors of structures are studied by the analysis of the elastic and the inelastic single degree of freedom system in terms of the response spectrum and the ductility demand.

  • PDF

The Method for detecting leakage current of a electric vehicle (전기 구동 차량의 누설 전류 검출 기법)

  • Park, Hyunseok;Eom, Jeongyong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.139.1-139.1
    • /
    • 2011
  • Electric vehicle use independent electricity of high voltage. if isolation of electricity is destructed, devices and people are considerably damaged. Therefore, detection of ground fault is necessary for electric vehicle. As the existing detection method of ground fault can not detect ground fault when isolation of both positive side and negative side of electricity is destructed, and change of voltage of electricity. This paper proposed detection method for ground fault of both two sides of electricity and change of voltage. The proposed method is verified by analysis of equivalent circuit.

  • PDF

Current Limiting Characteristics of a Resistive SFCL for a Single-line-to-ground Fault in the 22.9 kV System (1선 지락사고에 대한 배전급 저항형 초전도 한류기의 전류제한특성)

  • 최효상;황시돌;현옥배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.505-510
    • /
    • 2001
  • We simulated the current limiting characteristics of a resistive superconducting fault current limiter (SFCL) for a single line-to-ground fault in the 22.9 kV system. The transient current during the fault increased to 6.33 kA, 5.80 kA and 3.71 kA without SFCL at the fault angles 0$^{\circ}$, 45$^{\circ}$ and 90$^{\circ}$, respectively, a resistive SFCL limited effectively the fault current to 2.27 kA in a half cycle without any DC components. The maximum quench resistance of an SFCL, 16Ω was suggested to be appropriate to limit the fault current in the 22.9 kV distribution system, considering the operating cooperation of a protective relay and the current limiting performance of an SFCL.

  • PDF

A Fault Indicator Generation Algorithm using Phase Angle of Zero-Sequence Current in Ungrounded System (비접지 계통에서 영상전류 위상을 이용한 고장표시 생성 알고리즘)

  • Lim, Hee-Taek;Lim, Il-Hyung;Choi, Myeon-Song;Lee, Seung-Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1141-1149
    • /
    • 2008
  • Most faults are single-phase-to-ground fault in ungrounded system. The fault currents of single-phase-to-ground are much smaller than detection thresholds of measurement devices, so detecting single-phase-to-ground faults is difficult and important in ungrounded system. This paper proposed to a FI(Fault Indicator) generation algorithm in ungrounded system. The algorithm just using line-to-line voltage and zero-sequence current detects fault line, fault phase, fault section and FI(Fault Indicator) at terminal device, This paper also proposed to application plan for this algorithm. In the case study, the proposed algorithm has been testified in demo system by Matlab/Simulink simulations.

A New Distance Relaying Algorithm for Phase-to-Ground Fault in 765kV Untransposed Transmission Lines (765kV 비연가 송전선로에서 단상지락고장 시어 거리개전 알고리즘)

  • AHN YONG JIN;KANG SANG HEE
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.452-454
    • /
    • 2004
  • An accurate digital distance relaying algorithm which is immune to reactance effect of the fault resistance and the load current for phase-to-ground fault in 765kV untransposed transmission lines is proposed. The algorithm can estimate adaptively the impedance to a fault point independent of the fault resistance. To compensate the magnitude and phase of the apparent impedance, this algorithm uses the angle of an impedance deviation vector. The impedance correction algorithm for Phase-to-ground fault uses a voltage equation at fault point to compensate the fault current at fault point. A series of tests using EMTP output data in a 765kV untransposed transmission lines have proved the accuracy and effectiveness of the proposed algorithm.

  • PDF