• Title/Summary/Keyword: Ground current

Search Result 1,725, Processing Time 0.037 seconds

A Study on the Calculation of Transmission Current-Carrying Capacity by Horizontal Arrangement Type in the Installation Methods of 154kV XLPE 600㎟ Power Cable Buried Ducts in Ground (154kV XLPE 600㎟ 지중관로 수평배열 형태별 허용전류용량 산정에 관한 연구)

  • Kim, Se-Dong;Yoo, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.53-58
    • /
    • 2016
  • The underground transmission lines which have been built to expand the suppling facilities will be continuously accompanying with high growth of the increase of power demand in the metropolitan area in recent years. So, it is necessary to maximize the ability and reliability of power supply with the current-carrying capability of the underground transmission lines. Design criteria of KEPCO is to be presented and used frequently. But it has to be studied about the installation methods of power cable buried in ground. In this study, we used the program for calculating the current-carrying capability of underground transmission power cables. We estimated the maximum permissible current values by the horizontal arrangement in the installation methods of power cable(154kV XLPE $600mm^2$) buried ducts in ground. To see the general tendency of the analysis, we researched a statistical analysis with such parameters as the maximum permissible current values. Through the regression analysis, we analyze the most highly values of the maximum permissible current on the Ra type duct arrangement.

Limitations and improvement of the in situ measurements of ground thermal conductivity in Korea (국내 지중열전도도 측정 방법의 한계 및 개선 방향)

  • Shim, Byoung Ohan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.195.2-195.2
    • /
    • 2011
  • The borehole heat exchanger of Geothermal Heat Pump (GHP) system should be sustainable and cost effective for long term operation. To guaranty the performance of the system thermal Response Tests (TRTs) with simple recommended procedures have been applied in many countries. Korea government developed a standard TRT procedure in order to control the quality on GHP projects. In the TRT procedure interpretation method has a rule that data set has to be interpreted by the line source model(LSM). The LSM employes some assumptions that surrounding medium is homogeneous and the line source is infinite and constant heat flux, however real ground condition is unisotropic and heterogeneous, and showing regional or local ground water flows in many cases. We need to develope improved evaluation models to estimate accurate ground thermal conductivity with respect to geological and influence of ground water because current TRT standard test procedure has limitations to be applied for every locations and system. This study surveyed the uncertainty of the thermal parameters from the interpretation method considering different evaluation period. The interpretation of 208 TRT data sets represents limitations of LSM application that some obtained ground thermal conductivities are statistically unstable and convergence time of ground thermal conductivity over test period shows trends responding the length of test period. This evaluation study will be helpful to provide some effective procedure for the thermal parameter estimation and to complement current TRT standard procedure.

  • PDF

High Frequency Grounding Impedances of Vertically-Driven Ground Rods

  • Kim, Tae-Ki;Lee, Bok-Hee;Jeon, Duk-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.41-48
    • /
    • 2009
  • Grounding impedance depends on the frequency of current flowing into a grounding system lightning in particular has a broad frequency spectrum from some tens of Hz to a few MHz. So the grounding impedance related to transient currents such as lightning should be measured. In this paper, the grounding impedances of vertically-driven ground rods of 10, 30 and 48[m] long are measured and analyzed as functions of the frequency of injected current and the feeding point. As a result, the longer the ground rod is, the lower the steady-state ground resistance is. However the grounding impedance of a vertically-driven ground rod at a high frequency is significantly increased. It is not always true that low grounding impedance follows from a low steady-state ground resistance. It is important to evaluate the high frequency performance of grounding systems for protection against lightning.

Current Limiting Characteristics of Superconducting Fault Current Limiter for Reduction of Unsymmetrical Fault Current in a Three-Phase Power System (삼상전력계통의 비대칭고장전류 저감을 위한 초전도한류기의 전류제한특성)

  • Kim, Min-Yeong;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.8-8
    • /
    • 2010
  • In this paper, the limiting characteristics of the fault current in a power system with a superconducting fault current limiter(SFCL) applied into neutral line of main transformer in a distribution power line were analyzed. The SFCL applied into the neutral line of main transformer power system can limit the unsymmetrical fault current from the single-line ground fault or the double-line ground fault. In addition, it could be decreased a number of SFCL and a load. This method could be expected to reduction of a power loss in the neutral line, because of a neutral line current is zero in ordinary times.

  • PDF

Applicability Study of the Carson Model for the calculation of the series inductance of the power feeding lines in AC traction system (AC 전기철도 급전선 선로정수 산정시 Carson 모델 적용 검토)

  • Chung, Sang-Gi;Kwon, Sam-Young;Chang, Sang-Hoon;Chang, Dong-Uk
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.169-178
    • /
    • 2008
  • In this paper, it is shown that Carson's equation can still be applied for the calculation of the series reactance of transmission lines with no ground return current as well as the one with ground return. It is proved in the following method. First two voltage drop equations for three-phase three wire transmission line are derived, one without considering ground return and the other using Carson's equation. The impedance matrix of the two equations are different from each other. But if we put the condition of zero ground current, $I_a+I_b+I_c=0$, those two equations becomes the identical equations. Therefore even a transmission line is not grounded, its line parameters can still be obtained using the Carson's equation. It has been confused whether or not Carson's equation can be used for an ungrounded system. It is because where ever Carson's equation is shown in the book, it also says that the system has ground return current paths as a premise. It is also verified with EMTP studies on the test circuit.

  • PDF

Frequency Characteristics of Grounding Impedances of the Deeply-driven Ground Rods (심매설 접지전극에 대한 접지임피던스의 주파수특성)

  • Kang, Sung-Man;Kim, Tae-Ki;Kim, Han-Soo;Lee, Bok-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1348-1349
    • /
    • 2008
  • Grounding impedance depends on the frequency of current flowing into a grounding system. Especially, the lightning gives a broad frequency spectrum from low frequency up to 1 MHz. So the grounding impedance related to high frequency current like lightning should be measured with high frequency source. In this paper, we described the grounding impedances of deeply-driven ground rods of 10 $\sim$ 48 m long with respect to the frequency of injected currents. For the experiments, we used the wideband power amplifier which can produce sinusoidal voltages with the frequency ranges of DC $\sim$ 250 MHz. As a result, the longer the ground rod is, the lower the ground resistance is. However the grounding impedance of deeply-driven ground rod in the range of higher frequency is significantly increased. As a consequence, it is important to evaluate the high frequency performance of grounding systems for lightning protection.

  • PDF

Frequency Dependence of Grounding Impedances of the Deeply-driven Ground Rods (심매설 접지전극의 접지임피던스의 주파수의존성)

  • Kim, Tae-Ki;Kang, Sung-Man;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.70-73
    • /
    • 2008
  • Grounding impedance depends on the frequency of current flowing into a grounding system. Especially, the lightning gives a broad frequency spectrum from low frequency up to 1 MHz. So the grounding impedance related to high frequency current like lightning should be measured with high frequency source. In this paper, we described the grounding impedances of deeply-driven ground rods of 10 ${\sim}$ 48 m long with respect to the frequency of injected currents and the feed point. For the experiments, we used the wideband power amplifier which can produce sinusoidal voltages with the frequency ranges of DC ${\sim}$ 250 MHz. As a result, the longer the ground rod is, the lower the ground resistance is. However the grounding impedance of deeply-driven ground rod in the range of higher frequency is significantly increased. As a consequence, it is important to evaluate the high frequency performance of grounding systems for lightning protection.

  • PDF

The Method for detecting leakage current of a electric vehicle (전기 구동 차량의 누설 전류 검출 기법)

  • Park, Hyunseok;Eom, Jeongyong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.139.1-139.1
    • /
    • 2011
  • Electric vehicle use independent electricity of high voltage. if isolation of electricity is destructed, devices and people are considerably damaged. Therefore, detection of ground fault is necessary for electric vehicle. As the existing detection method of ground fault can not detect ground fault when isolation of both positive side and negative side of electricity is destructed, and change of voltage of electricity. This paper proposed detection method for ground fault of both two sides of electricity and change of voltage. The proposed method is verified by analysis of equivalent circuit.

  • PDF

Measurement of Resistance of Multi-Grounded System by Ground Current Measurement (접지전류 측정에 의한 다중 접지계통의 접지저항 측정)

  • 최종기;안용호;정길조;한병성;김경철
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.4
    • /
    • pp.234-237
    • /
    • 2004
  • Measuring ground resistance has been a popular method of evaluation of the grounding electrode performance. If some portions of grounding electrodes are lost by corrosion, aging or other reasons, consequent deteriotation of the grounding performance would be resulted. It is one of the reasons why it is required to evaluate the performance of grounding systems regularly. However, in case of the electric facilities with multi-grounded system such as power substations with multi-grounded overhead ground wires and/or distribution line neutrals, it is practically difficult to disconnect neutrals or skywires from the substation grounding mesh for the ground resistance measurement. In this paper, a method for the grounding performance measurement of multi-grounded systems, which is based on the measuring ground current distributions, has been proposed. A field test results has shown the validity of the proposed test method.

Measurement of Resistance of Multi-Grounded System by Ground Current Measurement (접지전류 측정에 의한 다중 접지계통의 접지저항 측정)

  • 최종기;안용호;정길조;한병성;김경철
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.4
    • /
    • pp.234-234
    • /
    • 2004
  • Measuring ground resistance has been a popular method of evaluation of the grounding electrode performance. If some portions of grounding electrodes are lost by corrosion, aging or other reasons, consequent deteriotation of the grounding performance would be resulted. It is one of the reasons why it is required to evaluate the performance of grounding systems regularly. However, in case of the electric facilities with multi-grounded system such as power substations with multi-grounded overhead ground wires and/or distribution line neutrals, it is practically difficult to disconnect neutrals or skywires from the substation grounding mesh for the ground resistance measurement. In this paper, a method for the grounding performance measurement of multi-grounded systems, which is based on the measuring ground current distributions, has been proposed. A field test results has shown the validity of the proposed test method.