• Title/Summary/Keyword: Ground control software

Search Result 139, Processing Time 0.025 seconds

Accuracy of Combined Block Adjustment with GPS-Permanentstation (GPS 연속관측점을 이용한 결합블럭조정의 정확도)

  • 박운용;이재원;신상철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.1
    • /
    • pp.21-32
    • /
    • 1999
  • Mapping and precise point determination by photogrammetry have been shown to be an economic solution. But control points are necessary to determine the exterior orientation parameters. Although the number of required control points has been reduced based on extended bundle adjustment and reinforced cross-strip, the ground survey is a significant factor of whole expenses in photogrammetry. The status of GPS-photogrammetry with kinematic DGPS-positioning to overcome this disadvantages, is now steadly progressive since the first possibility has been proved. The completed satellite configuration, powerful receiver function and upgraded software for kinematic DGPS-positioning have extensively improved the accuracy of combined bundle adjustment. So the research for the operational use of GPS-photogrammetry is absolutely necessary. The presented test field was designed for identification of subsidences in a coal mining area, flown with 60% sidelap and cross strips. Just with 6 control points and combined block adjustment instead of the traditionally used 21 horizontal and 81 vertical control points the same ground accuracy has been reached. The accuracy of kinematic GPS-positioning and combined block adjustment was independent upon the distance of the ground reference station. It also has been showed that the special model for the systematic error correction in the combined block adjustment.

  • PDF

Fault Management Design Verification Test for Electrical Power Subsystem and Attitude and Orbit Control Subsystem of Low Earth Orbit Satellite (저궤도위성의 전력계 및 자세제어계 고장 관리 설계 검증시험)

  • Lee, Sang-Rok;Jeon, Hyeon-Jin;Jeon, Moon-Jin;Lim, Seong-Bin
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.14-23
    • /
    • 2013
  • Fault management design of the satellite describes preparations for failures which can occur during operational phase. Fault management design contains detection and isolation function of anomaly, and also it contains function to maintain the satellite in safe condition until the ground station finds out a cause of failure and takes a countermeasure. Unlike normal operation, safing operation is automatically performed by Power Control and Distribution Unit and Integrated Bus Management Unit which loads Flight Software without intervention of ground station. Since fault management operation is automatical, fault management logic and functionality of relevant hardware should be thoroughly checked during ground test phase, and error which is similar to actual should be carefully applied without damage. Verification test for fault management design is conducted for various subsystems of satellite. In this paper, we show the design process of fault management design verification test for Electrical Power Subsystem and Attitude and Orbit Control Subsystem of Low Earth Orbit satellite flight model and the test results.

Design of A High-Speed Data Transmission System for Satellite Ground Inspection Trial

  • Hao Sun;Dae-Ki Kang
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.26-34
    • /
    • 2023
  • A high-speed data transmission system is designed for the ground inspection equipment of satellite measurement and control. Based on USB2.0, the system consists of interface chip CY7C68013A, programmable logic processing unit EP4CE30F23C8, analog/digital and digital/analog conversion units. The working principle of data transmission is analyzed, and the system software logic and hardware composition scheme are detailed. The system was utilized to output/capture and store specific data packets. The results show that the high-speed data transmission speed can reach 38MB/s, and the system is effective for satellite test requirements.

Design of the Crane position control System using GPS and USN (GPS와 USN을 이용한 크레인 위치제어 시스템 설계)

  • Lim, Su-Il;Nam, Si-Byung;Lim, Hae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1520-1525
    • /
    • 2009
  • In this paper, we study and simulate the suggested position control system using GPS and USN to replace the existing control system of a crane. For the correct approach, the position control system of a crane is divided into the control system of the ground station and the mobile station The hardware is comprised of GPS receiving module to receive the position control data of a crane from GPS satellites, bluetooth communication module for the data communication between the ground station and the mobile station, supersonic sensor module for a precise position control of a crane, motor to replace a crane roller, embedded MCU(ATmega128L) and so on. In here, an embedded MCU controls GPS receiving module, bluetooth communication module and supersonic sensor module. The Software is comprised of three programs. Three programs are the program to filter GGA output part in a receiving data of GPS receiving module, the driving program for supersonic sensor module, the digital map program to monitor a crane location. From the simulation results, it is demonstrated that the proposed system has the capability of crane position control with 1cm precision.

A Study on Operating Software Development and Calibration of Multi-Axis Simulation (다축 시뮬레이터의 구동 소프트웨어 개발 및 보정에 관한 연구)

  • 정상화;류신호;신형성;김상석;김종태;박용래
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.141-141
    • /
    • 2000
  • In the recent day, fatigue life prediction techniques play a major role in the design of components in th ground vehicle industry. Full scale durability testing in the laboratory is an essential of any fatigue life evaluation of components or structure of the automotive vehicle. Component testing is particularly important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, multi-axis durability testing simulator is used to car교 out the fatigue test. In this paper, the operation software for simultaneously driving 3-axis simulator is developed and the real-time signals of input-output data are displayed in window of PC. Moreover, the displacements and the loads of 3-axis actuators are calibrated separately and the operating characteristics of the actuators are evaluated.

  • PDF

Design of New Signaling System Test Bench for High Speed Rail (차세대 고속철도 신호제어시스템의 실험 기본설계)

  • 이종우;황종규;오석문;김영훈
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.315-321
    • /
    • 1999
  • The railway signaling system consists of microcomputerized vital devices on board and ground, which are connected to one another by track circuits, and interlocking equipment for route control, The software plays a major role in these microcomputer-based vital systems. Therefore it is important to design the software and validate the required levels of safety and reliability To verify the conditions and functions of signaling logic, the laboratory prototype test bench, which consists of personal computers, VME system and Ethernet LAN, will be developed. In this paper general design of signaling system test bench for high-speed rail is described and some developed subprogram is presented.

  • PDF

Development of the integrated management simulation system for the target correction (표적 수정이 가능한 사용자 개입 통합 관리 모의 시스템 개발)

  • Park, Woosung;Oh, TaeWon;Park, TaeHyun;Lee, YongWon;Kim, Kibum;Kwon, Kijeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.600-609
    • /
    • 2017
  • We designed a target management integration system that enables us to select the final target manually or automatically from seeker's sensor image. The integrated system was developed separately for the air vehicle system and the ground system. The air vehicle system simulates the motion dynamics and the sensor image of the air vehicle, and the ground system is composed of the target template image module and the ground control center module. The flight maneuver of the air vehicle is based on pseudo 6-degree of freedom motion equation and the proportional navigation guidance. The sensor image module was developed using the known infrared(IR) image rendering method, and was verified by comparing the rendered image to that of a commercial software. The ground control center module includes an user interface that can display as much information to meet user needs. Finally, we verified the integrated system with simulated impact target mission of the air vehicle, by confirming the final target change and the shot down result of the user's intervention.

ELECTRICAL GROUND SUPPORT EQUIPMENT (EGSE) DESIGN FOR SMALL SATELLITE

  • Park, Jong-Oh;Choi, Jong-Yoen;Lim, Seong-Bin;Kwon, Jae-Wook;Youn, Young-Su;Chun, Yong-Sik;Lee, Sang-Seol
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.3
    • /
    • pp.215-224
    • /
    • 2002
  • This paper describes EGSE design for the small satellite such like KOMPSAT-2 satellite. Recent design trend of small satellite and EGSE is to take short development time and less cost. For this purpose, the design for KOMPSAT-2 satellite and EGSE are not much modified from KOMPSAT-1 heritage. It means that it is able to be accommodated the verified hardware and software modules used in KOMPSAT-1 satellite program if possible. The objective of EGSE is to provide hardware and software for efficient electrical testing of integrated KOMPSAT-2 satellite in three general categories. (1) Simulators for ground testing (e.g. solar-simulation power, earth scenes, horizons and sun sensor). (2) Ground station type satellite data acquisition and processing test sets. (3) Overall control of satellite using hardline datum. In KOMPSAT (KOrea Multi-Purpose SATellite) program, KOMPSAT-2 EGSE was developed to support satellite integration and test activities. The KOMPSAT-2 EGSE was designed in parallel with satellite design. Consequently, the KOMPSAT-2 EGSE was based on the KOMPSAT-1 heritage since the spacecraft design followed the heritage. The KOMPSAT-2 baseline was elaborated by taking advantage of experience from KOMPSAT-1 program. The EGSE of KOMPSAT-2 design concept is generic modular design with preference in part selection with commercial off-the-shelf which were proven from KOMPSAT-1 programs, flexible/user friendly operational environment (graphical interface preferred), minimized new design and self test capability.

The system for UAV to approach to a ship and to monitor via AIS information (AIS 정보를 활용한 UAV의 효율적인 선박 접근 및 모니터링을 위한 시스템)

  • Kim, Byoung-Kug;Hong, Sung-Hwa;Kang, Jiheon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1124-1129
    • /
    • 2021
  • The application area based on UAV (Unmanned Aerial Vehicle) is continuously increasing as time passing by. In particular the UAVs which consist of more than four horizontal propellers and the functionality of VTOL (Vertical Take-Off and Landing) are utilized in diverse platforms and the application products due to their safety and aerodynamically simpler design and architectures. The most UAV missions are controlled by GCSs (Ground Control System). The GCSs are generally connected to the internet and get electrical map and environmental information such as temperature, humidity, wind speed, wind direction and so on. In this paper, we design a system for UAV system to have capability of approaching to a certain ship and monitoring her efficiently by using AIS (Auto Identification System) information. Furthermore we verify that adapting AIS on GCS side is more efficient through experiments.

Launch and Early Orbit Phase Simulations by using the KOMPSAT Simulator

  • Lee, Sanguk;Park, Wan-Sik;Lee, Byoung-sun;Lee, Ho-Jin;Park, Hanjun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.33-36
    • /
    • 1999
  • The KOMPSAT, which is scheduled to be launched by Taurus launch vehicle in late November of 1999, will be in a sun-synchronous orbit with an altitude of 685km, eccentricity of 0.001, inclination of 98deg and local time of ascending node of 10:50 a.m. Electronics and Telecommunications Research Institute and Daewoo Heavy Industry had jointly developed a KOMPSAT Simulator as a component of the KOMPSAT Mission Control Element. The MCE had been delivered to Korea Aerospace Research Institute for the KOMPSAT ground operation. It is being used for training of KOMPSAT ground station personnel. Each of satellite subsystems and space environment were mathematically modeled in the simulator. To verify the overall function of KOMPSAT simulator, a Launch and Early Orbit Phase(LEOP) operation simulations have been performed. The simulator had been verified through various tests such as functional level test, subsystem test, interface test, system test, and acceptance test. In this paper, simulation results for LEOP operations to verify flight software adapted into simulator, satellite subsystem models and environment models are presented.

  • PDF