• Title/Summary/Keyword: Ground control point

Search Result 324, Processing Time 0.025 seconds

Extraction of Individual Trees and Tree Heights for Pinus rigida Forests Using UAV Images (드론 영상을 이용한 리기다소나무림의 개체목 및 수고 추출)

  • Song, Chan;Kim, Sung Yong;Lee, Sun Joo;Jang, Yong Hwan;Lee, Young Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1731-1738
    • /
    • 2021
  • The objective of this study was to extract individual trees and tree heights using UAV drone images. The study site was Gongju national university experiment forest, located in Yesan-gun, Chungcheongnam-do. The thinning intensity study sites consisted of 40% thinning, 20% thinning, 10% thinning and control. The image was filmed by using the "Mavic Pro 2" model of DJI company, and the altitude of the photo shoot was set at 80% of the overlay between 180m pictures. In order to prevent image distortion, a ground reference point was installed and the end lap and side lap were set to 80%. Tree heights were extracted using Digital Surface Model (DSM) and Digital Terrain Model (DTM), and individual trees were split and extracted using object-based analysis. As a result of individual tree extraction, thinning 40% stands showed the highest extraction rate of 109.1%, while thinning 20% showed 87.1%, thinning 10% showed 63.5%, and control sites showed 56.0% of accuracy. As a result of tree height extraction, thinning 40% showed 1.43m error compared with field survey data, while thinning 20% showed 1.73 m, thinning 10% showed 1.88 m, and control sites showed the largest error of 2.22 m.

Foundation Methods for the Soft Ground Reinforcement of Lightweight Greenhouse on Reclaimed Land: A review (간척지 온실 기초 연약지반 보강 방법에 대한 고찰)

  • Lee, Haksung;Kang, Bang Hun;Lee, Su Hwan
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.440-447
    • /
    • 2020
  • The demand for large-scale horticultural complexes utilizing reclaimed lands is increasing, and one of the pending issues for the construction of large-scale facilities is to establish foundation design criteria. In this paper, we tried to review previous studies on the method of reinforcing the foundation of soft ground. Target construction methods are spiral piles, wood piles, crushed stone piles and PF (point foundation) method. In order to evaluate the performance according to the basic construction method, pull-out resistance, bearing capacity, and settlement amount were measured. At the same diameter, pull-out resistance increased with increasing penetration depth. Simplified comparison is difficult due to the difference in reinforcement method, diameter, and penetration depth, but it showed high bearing capacity in the order of crushed stone pile, PF method, and wood pile foundation. In the case of wood piles, the increase in uplift resistance was different depending on the slenderness ratio. Wood, crushed stone pile and PF construction methods, which are foundation reinforcement works with a bearing capacity of 105 kN/㎡ to 826 kN/㎡, are considered sufficient methods to be applied to the greenhouse foundation. There was a limitation in grasping the consistent trend of each foundation reinforcement method through existing studies. If these data are supplemented through additional empirical tests, it is judged that a basic design guideline that can satisfy the structure and economic efficiency of the greenhouse can be presented.

Assessment of Parallel Computing Performance of Agisoft Metashape for Orthomosaic Generation (정사모자이크 제작을 위한 Agisoft Metashape의 병렬처리 성능 평가)

  • Han, Soohee;Hong, Chang-Ki
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.427-434
    • /
    • 2019
  • In the present study, we assessed the parallel computing performance of Agisoft Metashape for orthomosaic generation, which can implement aerial triangulation, generate a three-dimensional point cloud, and make an orthomosaic based on SfM (Structure from Motion) technology. Due to the nature of SfM, most of the time is spent on Align photos, which runs as a relative orientation, and Build dense cloud, which generates a three-dimensional point cloud. Metashape can parallelize the two processes by using multi-cores of CPU (Central Processing Unit) and GPU (Graphics Processing Unit). An orthomosaic was created from large UAV (Unmanned Aerial Vehicle) images by six conditions combined by three parallel methods (CPU only, GPU only, and CPU + GPU) and two operating systems (Windows and Linux). To assess the consistency of the results of the conditions, RMSE (Root Mean Square Error) of aerial triangulation was measured using ground control points which were automatically detected on the images without human intervention. The results of orthomosaic generation from 521 UAV images of 42.2 million pixels showed that the combination of CPU and GPU showed the best performance using the present system, and Linux showed better performance than Windows in all conditions. However, the RMSE values of aerial triangulation revealed a slight difference within an error range among the combinations. Therefore, Metashape seems to leave things to be desired so that the consistency is obtained regardless of parallel methods and operating systems.

Accuracy Improvement of the ICP DEM Matching (ICP DEM 매칭방법의 정확도 개선)

  • Lee, Hyoseong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.443-451
    • /
    • 2015
  • In photogrammetry, GCPs (Ground Control Points) have traditionally been used to determine EOPs (Exterior Orientation Parameters) and to produce DEM (Digital Elevation Model). The existing DEM can be used as GCPs, where the observer’s approach is a difficult area, because it is very restrictive to survey in the field. For this, DEM matching should be performed. This study proposed the fusion method using ICP (Iterative Closest Point) and RT (proposed method by Rosenholm and Torlegard, 1988) in order to improve accuracy of the DEM matching. The proposed method was compared to the ICP method to evaluate its usefulness. Pseudo reference DEM with resolution 10m, and modified DEM (random-numbers are added from 0 to 2 at height; scale is 0.9; translation is 100 meters in 3-D axes; rotation is from 10° to 50° from the reference DEM) were used in the experiment. The results proposed accuracy was highest in the matching and absolute orientation. In the case of ICP, according to rotation of the modified DEM being increased, absolute orientation error is increased, while the proposed method generally showed consistent results without increasing the error. The proposed method would be applied to matching when the DEM is modified up to 30° rotation, compared to the reference DEM, based on the results of experiments. In addition when we use Drone, this method can be utilized to identify EOPs or detect 3-D surface deformation from the existing DEM of the inaccessible area.

Quality Analysis of GCP Chip Using Google Map (Google Map을 이용한 GCP 칩의 품질 분석)

  • Park, Hyeongjun;Son, Jong-Hwan;Shin, Jung-Il;Kweon, Ki-Eok;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.907-917
    • /
    • 2019
  • Recently, the demand for high-resolution satellite images increases in many fields such as land monitoring and terrain analysis. Therefore, the need for geometric correction is increasing. As an automatic precision geometric correction method, there is a method of automatically extracting the GCP by matching between the GCP Chip and the satellite image. For automatic precision geometric correction, the success rate of matching GCP Chip and satellite image is important. Therefore, it is important to evaluate the matching performance of the manufactured GCP Chip. In order to evaluate the matching performance of GCP Chips, a total of 3,812 GCP Chips in South Korea were used as experimental data. The GCP Chip matching results of KOMPSAT-3A and Google Map showed similar matching results. Therefore, we determined that Google Map satellite imagery could replace high-resolution satellite imagery. Also, presented a method using center point and error radius of Google Map to reduce the time required to verify matching performance. As a result, it is best to set the optimum error radius to 8.5m. Evaluated the matching performance of GCP Chips in South Korea using Google Maps. And verified matching result using presented method. As a result, the GCP Chip s in South Korea had a matching success rate of about 94%. Also, the main matching failure factors were analyzed by matching failure GCP Chips. As a result, Except for GCP Chips that need to be remanufactured, the remaining GCP Chips can be used for the automatic geometric correction of satellite images.

Efficient method for acquirement of geospatial information using drone equipment in stream (드론을 이용한 하천공간정보 획득의 효율적 방안)

  • Lee, Jong-Seok;Kim, Si-Chul
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.2
    • /
    • pp.135-145
    • /
    • 2022
  • This study aims to verify the Drone utilization and the accuracy of the global navigation satellite system (GNSS), Drone RGB (Photogrammetry) (D-RGB), and Drone LiDAR (D-LiDAR) surveying performance in the downstream reaches of the local stream. The results of the measurement of Ground Control Point (GCP) and Check Point (CP) coordinates confirmed the excellence. This study was carried out by comparing GNSS, D-RGB, and D-LiDAR with the values which the hydraulic characteristics calculated using HEC-RAS model. The accuracy of three survey methods was compared in the area of the study which is the ownership station, to 6 GCP and 3 CP were installed. The comparison results showed that the D-LiDAR survey was excellent. The 100-year frequency design flood discharge was applied in the channel sections of the small stream. As a result of D-RGB surveying 2.30 m and D-LiDAR 1.80 m in the average bed elevation, and D-RGB surveying 4.73 m and D-LiDAR 4.25 m in the average flood condition. It is recommended that the performance of D-LiDAR surveying is efficient method and useful as the surveying technique of the geospatial information using the drone equipment in stream channel.

Effects of Greenhouse Orientation on the Greenhouse Environment and the Growth of Tomato in Forcing Culture (시설방향이 시설내 환경과 촉성재배 토마토 생육에 미치는 영향)

  • Choi, Young-Hah;Park, Kyoung-Sub;Kang, Nam-Jun;Kim, Hong-Lim;Kwak, Yong-Bum;Kim, Heung-Deug;Goo, Dae-Hoe;Cho, Myoung-Hwan
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • This experiment was conducted to investigate the effect of greenhouse orientation on the greenhouse environment and the growth and yield of tomato cv 'Momotaro-Yoku' in forcing culture. The photosynthetic phpton flux density (PPFD) of a.m was higher in north-south orientation than that in east-west orientation and it was opposed in the p.m. Mean PPFD of a day was higher in east-west orientation than that in north-south orientation because the light transmitting area became larger in east-west orientation with decrease of incidence angle. The PPFD at 60 cm point above ground of all furrows was poor due to shadows near plants and it was higher in north-south orientation than that in east-west orientation. The air temperature in the greenhouse was higher in east-west orientation than that in north-south orientation but there was no significant difference since mid February as solar altitude goes up. The soil temperature was some higher in east-west orientation than that in north-south orientation and there was not significant difference among ridges. In east-west orientation, as ripening was promoted, high early yield of tomato were obtained. So total yield was greater about 8% in east-west orientation than that in north-south orientation. Therefore, it was considered that east-west orientation is more advantageous than north-south orientation for forcing culture of tomato.

Digital Documentation and Short-term Monitoring on Original Rampart Wall of the Gyejoksanseong Fortress in Daejeon, Korea (대전 계족산성 원형성벽의 디지털기록화 및 단기모니터링 연구)

  • Kim, Sung Han;Lee, Chan Hee;Jo, Young Hoon
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.169-188
    • /
    • 2019
  • This study was carried out unmanned aerial photography and terrestrial laser scanning to establish digital database on original wall of Gyejoksanseong fortress, and measured ground control points for continuity of the monitoring. It also performed precise examination with the naked eye, unmanned aerial photogrammetry, endoscopy, total station and handy measurement to examine the structural stability of the original walls. The ground control points were considered as a point where visual field can be secured, 3 points were selected around each of the south and north walls. For the right side of the south original wall, aerial photogrammetry was conducted using drones and a deviation analysis of 3-dimensional digital models was performed for short-term monitoring. As a result, the two original walls were almost matched in range within 5mm, and no difference indicating displacement of stones was found, except for partial deviation. Regular monitoring of the areas with structural deformation such as bulging, weak and fracture zone by precisely examining with the naked eye and using high-resolution photo data revealed no distinct change. The inner foundation observed through endoscopy found out that filling stones of the original walls were still remained, while most filling soil was lost. As a result of measuring the total station focusing around the points with structural deformation on the original walls, the maximum displacements of the north and south walls were somewhat high with 6.6mm and 3.8mm, respectively, while the final displacements were relatively stable at below 2.9mm and 1.4mm, respectively. Handy measurement also did not reveal clear structural deformation with displacements below 0.82mm at all points. Even though the results of displacement monitoring on the original walls are stable, it is hard to secure structural stability due to the characteristics of ramparts where sudden brittle fracture occurs. Therefore, it is necessary to conduct conservational scientific diagnosis, precise monitoring, and structural analysis based on the 3-dimensional figuration information obtained in this research.

Numerical Modeling of Flow Characteristics within the Hyporheic Zones in a Pool-riffle Sequences (여울-소 구조에서 지표수-지하수 혼합대의 흐름 특성 분석에 관한 수치모의 연구)

  • Lee, Du-Han;Kim, Young-Joo;Lee, Sam-Hee
    • Journal of Wetlands Research
    • /
    • v.14 no.1
    • /
    • pp.75-87
    • /
    • 2012
  • Hyporheic zone is a region beneath and alongside a stream, river, or lake bed, where there is mixing of shallow groundwater and surfacewater. Hyporheic exchange controls a variety of physical, biogeochemical and thermal processes, and provides unique ecotones in a aquatic ecosystem. Field and experimental observations, and modeling studies indicate that hyporheic exchange is mainly in response to pressure gradients driven by the geomorphological features of stream beds. In the reach scale of a stream, pool-riffle structures dominate the exchange patterns. Flow over a pool-riffle sequence develops recirculation zones and stagnation points, and this flow structures make irregular pressure gradient which is driving force of the hyporheic exchange. In this study, 3 D hydro-dynamic model solves the Reynolds-averaged Navier-Stokes equations for the surface water and Darcy's Law and the continuity equation for ground water. The two sets of equations are coupled via the pressure distribution along the interface. Simulation results show that recirculation zones and stagnation points in the pool-riffle structures dominantly control the upwelling and downwelling patterns. With decrease of recirculation zones, length of donwelling zone formed in front of riffles is reduced and position of maximum downwelling point moves downward. The numerical simulation could successfully predict the behavior of hyporheic exchange and contribute the field study, river management and restoration.

Fungal Occurrence in Fresh and Dried Red Pepper (건고추 생산단계 중 고추의 곰팡이 발생)

  • Kim, Sosoo;Baek, Seul Gi;Hwang, Injun;Kim, Se-Ri;Jung, Gyusuck;Roh, Eunjung;Jang, Ja Yeong;Kim, Jeomsoon;Lee, Theresa
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.6
    • /
    • pp.571-575
    • /
    • 2019
  • Fungal occurrence during production of dried red pepper was investigated using red pepper samples collected at harvest, before and after washing, and before, during or after drying. Fungal incidence was evaluated by counting the number of fungal colonies grown after incubating random pepper cuts on potato dextrose agar plates. Washing with ground water had no significant effect on reduction of fungal contamination. Fungal increase was observed in some samples, and the insides of washer and containers were contaminated with fungi. Drying caused significant fungal increase regardless of drying method although the fungal incidence after machine drying was lower than that after greenhouse drying. Fungal increase was observed in the samples being dried in a greenhouse and some mycotoxigenic species were also detected. Therefore, the most important control point for fungal contamination during dried pepper production appears to be the drying process, especially in a greenhouse.