• Title/Summary/Keyword: Ground based augmentation system

Search Result 43, Processing Time 0.028 seconds

Analysis of Ionospheric Spatial Gradient for Satellite Navigation Systems (위성항법시스템 적용을 위한 전리층 지연값 기울기 연구)

  • Kim, Jeong-Rae;Yang, Tae-Hyoung;Lee, Eun-Sung;Jun, Hyang-Sig
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.898-904
    • /
    • 2006
  • Ionospheric storms, caused by the interaction between Solar and geomagnetic activities, may degrade the differential GNSS(Global Navigation Satellite Systems) performance significantly, and the importance of the ionospheric storm research is growing for the GBAS(Ground-Based Augmentation System) and SBAS(Satellite-Based Augmentation System) development. In order to support Korean GNSS augmentation system development, a software tool for analyzing the regional ionosphere is being developed and its preliminary results are discussed. After brief description of the ionosphere and ionospheric storm, the research topics on the GBAS applications are discussed. The need for ionospheric spatial gradient analysis is described and some results on the ionospheric spatial gradient during recent storm periods are discussed.

GBAS Ground Testing and Performance Analysis at Gimpo International Airport (김포국제공항의 GBAS 지상시험 및 성능 분석)

  • Jeong, Myeong-Sook;Choi, Yunjung;Yun, Youngsun;Bae, Joongwon;Jun, Hyang-Sig;Lee, Young Jae
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.22-32
    • /
    • 2015
  • Ground based augmentation system (GBAS) is a next generation radio navigation aids to support precision approach of aircraft. Recently, airports installing GBAS and providing GBAS service are increasing all over the world. For the first time in Korea, SLS-4000 which is the GBAS ground equipment of Honeywell had been installed at Gimpo International Airport in 2013, and evaluated its functionality and performance of through the ground testing. This paper introduces a ground test and evaluation criteria on the CAT-I GBAS system, and describes testing methods for GBAS ground testing of Gimpo International Airport. In addition, detail testing methods and analysis results on major five of 12 ground test items are described.

GBAS Flight Testing and Performance Assessment using Flight Inspection Aircraft at Gimpo International Airport (비행검사용 항공기를 이용한 김포국제공항 GBAS 비행시험 및 성능평가)

  • Jeong, Myeong-Sook;Bae, Joongwon;Jun, Hyang-Sig;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.49-61
    • /
    • 2015
  • Ground Based Augmentation System(GBAS) is a system that offers an aircraft within 23 NM radius from the airport precision positioning service and precision approach service using the concept of Differential Global Positioning System(DGPS). After GBAS ground equipment installing at the airport, functionalities and performances of GBAS should be verified through the GBAS ground and flight testing. This paper describes the methods and results for GBAS flight test using the flight inspection aircraft at Gimpo International Airport. From the test results, we confirmed that the VDB data was received without misleading within the VDB coverage of Gimpo International Airport, and VDB field strength, protection level, and course alignment accuracy met the evaluation's criteria.

Performance Assessment of GBAS Ephemeris Monitor for Wide Faults (Wide Fault에 대한 GBAS 궤도 오차 모니터 성능 분석)

  • Junesol Song;Carl Milner
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.189-197
    • /
    • 2024
  • Galileo is a European Global Navigation Satellite System (GNSS) that has offered the Galileo Open Service since 2016. Consequently, the standardization of GNSS augmentation systems, such as Satellite Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), and Aircraft Based Augmentation System (ABAS) for Galileo signals, is ongoing. In 2023, the European Union Space Programme Agency (EUSPA) released prior probabilities of a satellite fault and a constellation fault for Galileo, which are 3×10-5 and 2×10-4 per hour, respectively. In particular, the prior probability of a Galileo constellation fault is significantly higher than that for the GPS constellation fault, which is defined as 1×10-8 per hour. This raised concerns about its potential impact on GBAS integrity monitoring. According to the Global Positioning System (GPS) Standard Positioning Service Performance Standard (SPS PS), a constellation fault is classified as a wide fault. A wide fault refers to a fault that affects more than two satellites due to a common cause. Such a fault can be caused by a failure in the Earth Orientation Parameter (EOP). The EOP is used when transforming the inertial axis, on which the orbit determination is based, to Earth Centered Earth Fixed (ECEF) axis, accounting for the irregularities in the rotation of the Earth. Therefore, a faulty EOP can introduce errors when computing a satellite position with respect to the ECEF axis. In GNSS, the ephemeris parameters are estimated based on the positions of satellites and are transmitted to navigation satellites. Subsequently, these ephemeris parameters are broadcasted via the navigation message to users. Therefore, a faulty EOP results in erroneous broadcast ephemeris data. In this paper, we assess the conventional ephemeris fault detection monitor currently employed in GBAS for wide faults, as current GBAS considers only single failure cases. In addition to the existing requirements defined in the standards on the Probability of Missed Detection (PMD), we derive a new PMD requirement tailored for a wide fault. The compliance of the current ephemeris monitor to the derived requirement is evaluated through a simulation. Our findings confirm that the conventional monitor meets the requirement even for wide fault scenarios.

Development of Real-time Mission Monitoring for the Korea Augmentation Satellite System

  • Daehee, Won;Koontack, Kim;Eunsung, Lee;Jungja, Kim;Youngjae, Song
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.23-35
    • /
    • 2023
  • Korea Augmentation Satellite System (KASS) is a satellite-based augmentation system (SBAS) that provides approach procedure with vertical guidance-I (APV-I) level corrections and integrity information to Korea territory. KASS is used to monitor navigation performance in real-time, and this paper introduces the design, implementation, and verification process of mission monitoring (MIMO) in KASS. MIMO was developed in compliance with the Minimum Operational Performance Standards of the Radio Technical Commission for Aeronautics for Global Positioning System (GPS)/SBAS airborne equipment. In this study, the MIMO system was verified by comparing and analyzing the outputs of reference tools. Additionally, the definition and derivation method of accuracy, integrity, continuity, and availability subject to MIMO were examined. The internal and external interfaces and functions were then designed and implemented. The GPS data pre-processing was minimized during the implementation to evaluate the navigation performance experienced by general users. Subsequently, tests and verification methods were used to compare the obtained results based on reference tools. The test was performed using the KASS dataset, which included GPS and SBAS observations. The decoding performance of the developed MIMO was identical to that of the reference tools. Additionally, the navigation performance was verified by confirming the similarity in trends. As MIMO is a component of KASS used for real-time monitoring of the navigation performance of SBAS, the KASS operator can identify whether an abnormality exists in the navigation performance in real-time. Moreover, the preliminary identification of the abnormal point during the post-processing of data can improve operational efficiency.

Development of Ground Monitoring and Control System for Korea Augmentation Satellite System

  • Daehee Won;Chulhee Choi;Eunsung Lee;Hantae Cho;Dongik Jang;Eunok Jang;Heetaek Lim;Ho Sung Lee;Jungja Kim;Joohap Choi
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.185-200
    • /
    • 2023
  • The Korea Augmentation Satellite System (KASS) is the first satellite navigation enhancement system in Korea developed in compliance with international standards. Technologies accumulated during the development process should be spread to industries such as academia and serve as the basis for developing the domestic satellite navigation field. This paper introduces the development process from design to implementation, testing, and verification of KASS control systems (KCS). First, development standards, milestones, requirements, and interface standards are presented as KCS development methods, and major functional design, physical design, and hardware/software implementation are described based on the allocated requirements. Subsequently, the verification environment, procedures, and results of the development product are covered and the developed operational and maintenance procedures are described. In addition, based on the experience gained through the development, suggestions were made for beneficial technology development and organization when promoting satellite navigation projects in the future. Since this work has important historical value for the development of domestic satellite navigation, it is expected that the development results will be shared with academia and industry in the future and be used as basic data for similar development.

DOP Analysis of Ground Based Augmentation System by the Position of Transmitter (송신기 위치에 따른 GBAS 시스템의 DOP 분석)

  • Lim, Joong-Soo;Chae, Gyoo-Soo
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • In this paper, we describe on the position error of GBAS. In reality, there are many sources which make errors into the calculation of receiver position. It is well known that the DOP of GBAS is an important position error source and is dependent on the numbers and positions of the transmitters. Here, we develop an algorism to calculate the DOP of the GNSS with 2-line transmitters into Korean area. The result is useful to predict the DOP of the positions where transmitters and receivers are located.

Conceptual Design of KASS Uplink Station (한국형 위성항법보강시스템(KASS) 위성통신국 기본 설계)

  • You, Moonhee;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.72-77
    • /
    • 2017
  • The Satellite Based Augmentation System (SBAS) broadcasts to users integrity and correction information for Global Navigation Satellite System (GNSS) such as GPS and GLONASS using geostationary orbit (GEO) satellites. In accordance with the recommendation of the International Civilian Aeronautical Organization (ICAO) to introduce SBAS until 2025, a Korean SBAS system development / construction project is underway with the Ministry of Land, Transport and Maritime Affairs. Korea Augmentation Satellite System (KASS) is a high precision GPS correction system which is composed of KASS Reference Station (KRS), KASS Processing Station (KPS), KASS Uplink Station (KUS), KASS Control Station (KCS) and GEO satellites. In this paper, we provided the conceptual design of the KASS uplink station, which is composed of the Signal Generator Section (SGS) and the Radio-Frequency Section (RFS), and interface between the KASS ground sector and the GEO satellite.