• Title/Summary/Keyword: Ground Surface Potential

Search Result 203, Processing Time 0.038 seconds

Ground Anchor Testing on Temporary Excavations (일반 가설앵커의 문제점과 개선방향)

  • 김성규;김낙경;김정렬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.545-552
    • /
    • 2003
  • For temporary excavation support in a congested urban area, the strand of ground anchor should be removed to get permission of the private land to install anchors. But the strand doesn't need to be removed in the outside city area after use. So the anchor body, tension anchor, is fabricated in-situ. The unbonded length of This anchor has several strands, which wrap only one sheath. When the anchor body is carried into job-site or installed in the bore hole, the sheath is torn easily because it is a very week material. So the grout permeate into the torn sheath. Because of that, the load doesn't transfer to the bond length of ground anchors. It may indicate that load is being transferred along the unbonded length and thus within the potential slip surface assumed for overall stability of the anchored system. The load tests were performed on seven low-pressure grouted anchors installed in weathered soil to verify its problems. Four anchors(Type A) have the unbonded length, which consist of five strands and a week sheath and three anchors(Type B) have strands, which is covered by plastic sheath filled with grease, in the unbonded length. Both anchors are compared with load tests results.

  • PDF

A Study on the Pretreatment of the Spent Coffee Grounds using Electrocoagulation and Its Filter Characteristics (전기 응고법을 이용한 커피박의 전처리 및 기능성 필터 특성 연구)

  • Park, Soobin;Han, Haneul;Park, Haneul;Lim, Seunghyun;Yoo, Bongyoung;Yoon, Sanghwa
    • Journal of Surface Science and Engineering
    • /
    • v.54 no.4
    • /
    • pp.209-214
    • /
    • 2021
  • As coffee consumption per person increases annually to 323 cups in 2018, treating the spent coffee ground has arisen because spent coffee ground results in soil and air pollution. The demands of air purification filters are increasing more and more because the air pollution due to the fine dust has become worse. The spent coffee grounds had a porous structure, however, the pore was blocked by organic oil compounds. Electrocoagulation, which is one of the electrochemical methods, has the potential to remove the organic compounds. The surface area of spent coffee grounds increased effectively after the electrocoagulation treatment, and surface morphology and surface area were confirmed using SEM and BET, respectively. Using the FT-IR, both the spent coffee grounds and the electrocoagulated spent coffee grounds were characterized. The filter characteristics were examined by the adsorption test using formaldehyde, one of the air pollutants.

New parametric approach to decomposition of disk averaged spectra of potential extra terrestrial planet I. Surface type ratio of the Earth

  • Ryu, Dong-Ok;Seong, Se-Hyun;Yu, Jin-Hee;Oh, Eun-Song;Ahn, Ki-Beom;Hong, Jin-Suk;Lee, Jae-Min;Kim, Suk-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.34.2-34.2
    • /
    • 2010
  • We built 7 potential extra-terrestrial planets including the full 3D Earth model with various surface types and 6 planet models, each with uniform surface characteristics. The surface types include ice, tundra, forest, grass, ground and ocean. We then imported these 7 planets into integrated ray tracing(IRT) model to compute their disk averaged spectra and to understand the spectral behavior depending on the geometrical view, illumination phase and seasonal change. The IRT computation show that the 6 planets with uniform surfaces exhibit clear spectral differences from that of the Earth. We then built a phase and seasonal DAS database for the 6 uniform surface planets and used them for parametric spectral decomposition technique to derive the Earth DAS. This computation resulted in the first potential solution to the surface type ratio of the Earth compared to the measured earth surface type ratio. The computational details and the implications are discussed.

  • PDF

Steel Pile Corrosion in Potential Acid Sulfate Soil (잠재성 특이산성토중 강관말뚝의 부식)

  • Lee, Seung-Heon;Park, Mi-Hyeun;Yoon, Kyung-Sup
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.559-562
    • /
    • 2003
  • The results and discussions of surveyed case site at constructed steel pile in potential acid sulfate soil were as follows. Topography at surveyed site was local alluvial valley and that site soils was classified as BanGog and YuGye series as detailed soil surveyed results in RDA and soil texture was Clay/Clay Loam. Soils pH was neutral, which was average 7.5 but much decreased to average 4.2 after $H_2O_2$ treatment. Organic matter and sulfate ions contents were very rich. The corrosion was severe at ground water fluctuation depth. Deposits colored black were attached to steel pile surface, which because of violent reaction in treatment HCI solution, were guessed as corrosion products (FeS) reduced by sulfate reducing bacteria(SRB). Consequently, main cause was thought microbiologically induced corrosion at this site where there is ground water fluctuation occurring oxidation and reduction reactions in turn and the soil is potential acid sulfate soil.

  • PDF

ASSESSMENT OF TUNNELLING-INDUCED BUILDING DAMAGE

  • Son, Moo-Rak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.86-95
    • /
    • 2010
  • Ground movements during tunnelling have the potential for major impact on nearby buildings, utilities and streets. The impacts on buildings are assessed by linking the magnitude of ground loss at the source of ground loss around tunnel to the lateral and vertical displacements on the ground surface, and then to the lateral strain and angular distortion, and resulting damage in the building. To prevent or mitigate the impacts on nearby buildings, it is important to understand the whole mechanism from tunnelling to building damage. This paper discusses tunneling-induced ground movements and their impacts on nearby buildings, including the importance of the soil-structure interactions. In addition, a building damage criterion, which is based on the state of strain, is presented and discussed in detail and the overall damage assessment procedure is provided for the estimation of tunnelling-induced building damage considering the effect of soil-structure interaction.

  • PDF

연삭가공 표면 거칠기 기상계측 방법

  • 김현수;안국진;홍성욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.345-350
    • /
    • 1993
  • This paper presents a new method based upon the light scattering concept for on-the-machine measurement of roughness of ground surfaces. The present method utilizes fluxes of scattered lights condensed through lenses aligned along the specular direction. A theorctical analysis is preformed for the purpose of investigating the possibility of the method as well as determining the experimental condition. Experiment is also performed to show the effectiveness of the proposed method. The theoretical and experimental results show that the proposed method has a potential to identify a wide range of surface roughness and is robust enough to be useful in on-the-machine measurement of roughness of ground surfaces.

  • PDF

Study on the Aerodynamic Characteristics of Wings Flying Over the Nonplanar Ground Surface

  • Han, Cheol-Heui;Lee, Kye-Beom;Cho, Jin-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.82-87
    • /
    • 2002
  • Aerodynamic analysis of NACA wings moving with a constant speed over guideways are performed using an indirect boundary element method (potential-based panel method). An integral equation is obtained by applying Green's theorem on all surfaces of the fluid domain. The surfaces over the wing and the guideways are discretized as rectangular panel elements. Constant strength singularities are distributed over the panel elements. The viscous shear layer behind the wing is represented by constant strength dipoles. The unknown strengths of potentials are determined by inverting the aerodynamic influence coefficient matrices constructed by using the no penetration conditions on the surfaces and the Kutta condition at the trailing edge of the wing. The aerodynamic characteristics for the wings flying over nonplanar ground surfaces are investigated for several ground heights.

Monitoring Technique and Device of Surface Contamination for Line-Post Insulator (지지애자의 표면오염 모니터링 기술 및 장치)

  • Kil, Gyung-Suk;Park, Dae-Won;Jung, Kwang-Seok;Kim, Sun-Jae;Seo, Dong-Hoan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.413-417
    • /
    • 2010
  • Line to ground faults by deterioration of insulators has frequently occurred in power system, and the main cause is surface contamination of the insulators. The contamination of insulator is analyzed by monitoring the surface leakage current flowing them. The suspension insulator is monitored by installation of a zero-phase current sensor(ZCT), but the line-post insulator is impossible to apply the same method because of its large diameter structure. This paper proposed a detection method of surface leakage current for a line-post insulator, and it can easily be applied to new and/or built insulators. The leakage current is indirectly calculated from the potential difference between the metal electrode attached on the surface of insulator and the ground connector. To evaluate the performance of the proposed method, the leakage current is compared as a function of contamination condition controlled by the density of NaCl solution. The leakage current is proportioned to the density of NaCl solution, and the voltage detected by the electrode showed the same trend. From the experimental results, we designed and fabricated a monitoring device which is composed of a detection electrode, signal converter, microprocessor, and ZigBee, and its measurement range is $10{\mu}A{\sim}5mA$.

Study on Management System of Ground Sinking Based on Underground Cavity Grade (공동관리 등급에 따른 지반함몰 관리등급제에 대한 연구)

  • Lee, Kicheol;Kim, Dongwook;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.23-33
    • /
    • 2017
  • Due to the rapid development of cities, densities and heights of urban structures are increased, and much larger and more underground spaces are being developed accordingly. Increasing development of underground spaces has induced more ground sinks and underground cavities. Therefore, safety of people is threatened by potential ground collapses and possible accidents, which may result from underground cavity. To actively respond against potential danger of ground sink, evaluation of existing cavity grade and development of recovery procedure are important. There exists the ground sinking management grade system of expressway developed as local standards in Japan. Recently, ground sinking management grade system of Seoul was developed with consideration of road and asphalt conditions. In this study, 209 underground cavities of ${\bigcirc}{\bigcirc}$ area were explored and their cavity shapes and grades were evaluated based on both ground sinking management grade systems of Japan and Seoul. Comparison is made between cavity grades evaluated based on both grading systems from Japan and Seoul. As a result of comparative analysis, the conservatively-estimated cavity grades requiring emergency restoration based on the Japanese management grade system of expressway result from neglection of layer thickness of surface pavement, considering only width and cover depth of a cavity.

The Possibility of Daily Flow Data Generation from 8-Day Intervals Measured Flow Data for Calibrating Watershed Model (유역모형 구축을 위한 8일간격 유량측정자료의 일유량 확장 가능성)

  • Kim, Sangdan;Kang, Du Kee;Kim, Moon Su;Shin, Hyun Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • In this study daily flow data is constructed from 8-day intervals flow data which has been measured by Nakdong River Water Environmental Laboratory. TANK model is used to expand 8-day intervals flow data into daily flow data. Using the Sequential quadratic programing, TANK model is auto-calibrated with daily precipitation and 8-day interval flow data. Generated and measured daily surface flow, ground water flow data and ground water recharge are shown to be in a good agreement. From this result, it is thought that this method has the potential to provide daily flow data for calibrating an watershed model such as SWAT.