• Title/Summary/Keyword: Ground Source Heat Pump (GSHP)

Search Result 111, Processing Time 0.031 seconds

Study on COP Variations with the duration of Ground Source Heat Pump Systems Operation (지열히트펌프의 작동시간 경과에 따른 COP 변화에 대한 연구)

  • Lee, Yonggyu;Baek, Namchoon;Yoon, Eungsang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.198.2-198.2
    • /
    • 2010
  • In this study, the COP variation with the duration of Ground Source Heat Pump (GSHP) systems operation was analyzed by experiment. This experimental facility was installed in residential house as a back-up device of solar thermal heating system. The capacity of heat pump is 2.5 kW with a vertical bore hole of 150m depth. The COP of GSHP is varied, depending on the ground temperature which is used as a heat source. The ground heat source temperature influencing heating COP is the soil or rock temperature which adjoin with geo-source heat exchanger. This temperature is decreased rapidly according to the operation duration of heat pump. As a result, COP of GSHP is decreased to 3 in one hour of continuous operation time.

  • PDF

A Experimental Study on the Ground Source and Rain Water Heat Source Heat Pump System in Apartment (공동주택 적용 지열 및 우수열원을 이용한 히트펌프의 실험적 연구)

  • Ko, Gun-Hyuk;Kim, Ji-Young;Kang, Eun-Chul;Lee, Euy-Joon;Hyun, Myung-Taek
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.833-837
    • /
    • 2008
  • GSHP(Ground Source Heat Pump) has been extensively disseminated due to the recent increasing demand over new and renewable energy. In this study, the operating performance of rain water and ground source heat pump system (RW-GSHP) was compared with GSHP during the heating test. Leaving load temperature(LLT) was $50^{\circ}C$, $53^{\circ}C$, $56^{\circ}C$, respectively and rain water tank temperature(RWT) was $13^{\circ}C$, $15^{\circ}C$, $17^{\circ}C$ in this heating test. The experiment was focused on comparison of the system operating performance depending on leaving load temperature (LLT) and rain water tank temperature (RWT). The results showed that rain water and ground source heat pump system (RW-GSHP) was higher heating performance and COPh than those of GSHP.

  • PDF

Cooling Performance of a Ground Source Heat Pump System (지열히트펌프시스템의 냉방운전에 따른 성능연구)

  • Lee, Jae-Keun;Jeong, Young-Man;Koo, Kyoung-Min;Hwang, Yu-Jin;Jang, Se-Yong;Kim, In-Kyu;Jin, Sim-Won;Lee, Dong-Hyuk
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.441-446
    • /
    • 2007
  • This present study is to evaluate the cooling performance of a water-to-refrigerant ground source heat pump system(GSHP) under actually operating condition. 1 unit is selected among 10 units of the GSHP in the building to analyze the performance. The average cooling COP of the GSHP at the part load of 64% is 8.2, overall system COP is 6.19. In the GSHP system, the cooling temperature of the condenser is lower compared to the air source heat pump system. Conclusively, the cooling performance of the GSHP is higher than the air source heat pump system by 80%.

  • PDF

A Study on Field test of the Horizontal Ground Source Heat Pump for Greenhouse (시설원예용 수평형 지열히트펌프 시스템 실증연구)

  • Park, Yong-Jung;Kang, Shin-Hyung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.505-510
    • /
    • 2007
  • Greenhouses should be heated during nights and co Id days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger (GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF

Performance Analysis of the Horizontal Ground Source Heat Pump for Greenhouse (시설원예용 수평형 지열 히트펌프 시스템의 성능분석)

  • Park, Yong-Jung;Kang, Shin-Hyung
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.447-452
    • /
    • 2007
  • Greenhouses should be heated during nights and cold days in order to fit growth conditions in greenhouses. Ground source heat pump(GSHP) or geothermal heat pump system(GHPs) is recognized to be outstanding heating and cooling system. Horizontal GSHP system is typically less expensive than vertical GSHP system but requires wide ground area to bury ground heat exchanger(GHE). In this study, a horizontal GSHP system with thermal storage tank was installed in greenhouse and investigated as performance characteristics. In the daytime, heating load of greenhouse is very small or needless because solar radiation increases inner air temperature. The results of study showed that the heating coefficient of performance of the heat pump ($COP_h$) was 2.9 and the overall heating coefficient of performance of the system($COP_{sys}$) was 2.4. Heating energy cost was saved 76% using the horizontal GSHP system with thermal storage tank.

  • PDF

A Study on the High Efficiency Ground Source Heat Pump System (1) (부하추종형 고효율 지열히트펌프 시스템에 관한 연구 (1))

  • Koh, Deuk-Yong;Kim, Ook-Joong;Choi, Sang-Kyu;Chang, Ki-Chang
    • New & Renewable Energy
    • /
    • v.1 no.4 s.4
    • /
    • pp.30-37
    • /
    • 2005
  • Cycle simulation of Ground Source Heat Pump[GSHP] system was carried out to determine the design specification of basic components such as turbo compressor and heat exchangers. Part load operation characteristics of the designed GSHP system was estimated using the compressor and heat exchanger performance data. A 50RT class turbo compressor for GSHP system is now under development, in which R134a refrigerant is adopted as working fluid. The compressor with variable cascade diffusers is designed to work both in cooling and heating modes so that it can actively keep up with the climate change with high efficiency. The normal running speeds of the compressor are 59000rpm for heating mode and 70000rpm for tooling mode respectively. It has two identical impellers at both ends of the rotor so as to minimize aero-induced thrust force effectively. GSHP system was coupled with a vortical type heat exchanger, and heat gain and heat loss from ground were evaluated per a bore hole. For the optimal integration of the heat pump system, its header for circulating fluid was combined with the ground heat exchangers in parallel and series configuration.

  • PDF

Experimental Study on the Cooling Performance of Vertical Closed Loop Water to Water Ground Source Heat Pump System (물 대 물 방식 수직 밀폐루프 지열원 히트펌프 시스템의 냉방성능에 대한 실험적 연구)

  • Hong, Boo-Pyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.58-63
    • /
    • 2014
  • A vertical closed loop ground source heat pump (GSHP) is used to produce heat from the low-grade energy source such as the outside air and ground source. It is known that a heat pump system type has better efficiency comparing to the electric heating system. This study only demonstrates that the vertical closed loop GSHP system is a feasible choice for space cooling of air conditioning. The coefficient of performance (COP) is the ratio of heat output to work supplied to the system in the form of electricity. For the vertical closed loop GSHP system in a cooling mode, the COP is the most commonly used way for judging the efficiency. For the purpose of this experiment, vertical closed loop GSHP system was installed in the laboratory and the experiment was executed. As a result, an average COP of vertical-closed loop GSHP system was 3.62 when the outside average temperature was $33^{\circ}C$.

A study on the Heat Transfer Performance according to Ground Heat Exchanger Types (지중열교환기의 종류에 따른 열전달 성능에 관한 연구)

  • Hwang, SuckHo;Song, Doosam
    • KIEAE Journal
    • /
    • v.10 no.4
    • /
    • pp.75-80
    • /
    • 2010
  • Generally, ground-source heat pump (GSHP) systems have a higher performance than conventional air-source systems. However, the major fault of GSHP systems is their expensive boring costs. Therefore, it is important issue that to reduce initial cost and ensure stability of system through accurate prediction of the heat extraction and injection rates of the ground heat exchanger. Conventional analysis methods employed by line source theory are used to predict heat transfer rate between ground heat exchanger and soil. Shape of ground heat exchanger was simplified by equivalent diameter model, but these methods do not accurately reflect the heat transfer characteristics according to the heat exchanger geometry. In this study, a numerical model that combines a user subroutine module that calculates circulation water conditions in the ground heat exchanger and FEFLOW program which can simulate heat/moisture transfer in the soil, is developed. Heat transfer performance was evaluated for 3 different types ground heat exchanger(U-tube, Double U-tube, Coaxial).

Analysis of Performance Changes in Ground source Heat Pump and Air Source Heat Pump According to Global Warming (지구온난화에 따른 지열히트펌프와 공기열히트펌프의 성능 변화 분석)

  • Jin Yeong Seo;Se Hyeon Ham;Dongchan Lee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.8-17
    • /
    • 2023
  • The air temperature is gradually increasing owing to global warming, especially in summer, therefore, the performance of an air source heat pump (ASHP) is expected to be decreased. Accordingly, the performance gap between the ASHP and ground source heat pump (GSHP) should be increased, however, the quantitative comparison has not been yet investigated. In this study, impact of global warming on the performance of the ASHP and GSHP is investigated based on the climate data for 1930, 1980, and 2030. The coefficient of performance (COP) as well as annual power consumption of the ASHP and GSHP are compared and analyzed. In the case of COP, the COP of GSHP hardly changes over the years owing to the constant ground temperature, while that of ASHP decreases by 3.7% for cooling and increases by 0.71% for heating. In the case of annual power consumption, the cooling and heating power consumption of GSHP increases by 12.69% and decreases by 15.58%, respectively, over the year owing to the changes in heating and cooling loads. As for the ASHP, the cooling and heating power consumption increases by 16.64% and decreases by 17.8%, respectively. For a more accurate comparison, power consumption ratio is introduced and shows that total annual power consumption of the GSHP to ASHP decreased from 68% in 1930 to 65% in 2030. Therefore, as global warming accelerates, the effect of reducing power consumption by using GSHP compared to ASHP is expected to be increasing.

Toward residential building energy conservation through the Trombe wall and ammonia ground source heat pump retrofit options, applying eQuest model

  • Ataei, Abtin;Dehghani, Mohammad Javad
    • Advances in Energy Research
    • /
    • v.4 no.2
    • /
    • pp.107-120
    • /
    • 2016
  • The aim of this research is to apply the eQuest model to investigate the energy conservation in a multifamily building located in Dayton, Ohio by using a Trombe wall and an ammonia ground source heat pump (R-717 GSHP). Integration of the Trombe wall into the building is the first retrofitting measure in this study. Trombe wall as a passive solar system, has a simple structure which may reduce the heating demand of buildings significantly. Utilization of ground source heat pump is an effective approach where conventional air source heat pump doesn't have an efficient performance, especially in cold climates. Furthermore, the type of refrigerant in the heat pumps has a substantial effect on energy efficiency. Natural refrigerant, ammonia (R-717), which has a high performance and no negative impacts on the environment, could be the best choice for using in heat pumps. After implementing the eQUEST model in the said multifamily building, the total annual energy consumption with a conventional R-717 air-source-heat-pump (ASHP) system was estimated as the baseline model. The baseline model results were compared to those of the following scenarios: using R-717 GSHP, R410a GSHP and integration of the Trombe wall into the building. The Results specified that, compared to the baseline model, applying the R-717 GSHP and Trombe wall, led to 20% and 9% of energy conservation in the building, respectively. In addition, it was noticed that by using R-410a instead of R-717 in the GSHP, the energy demand increased by 14%.