• Title/Summary/Keyword: Ground Shock

Search Result 192, Processing Time 0.023 seconds

A Study on How to Lower the Grounding Impedance by Needles-typed Grounding Rods (접지침봉에 의한 접지임피던스를 낮추는 방안 연구)

  • Park, Sung-Yeol
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.19-28
    • /
    • 2022
  • Purpose: One of the methods for preventing disasters such as fire, explosion, and electric shock caused by electricity is to perform grounding. In case of the grounding current includes a frequency component having a high, it is preferable to measure grounding impedance rather than grounding resistance. This study proposes countermeasures to reduce grounding impedance to suppress an ground potential rise due to a grounding current having a frequency component of several kHz or more. Method: General grounding rods and needles-typed grounding rods were buried in the ground, and grounding resistance and grounding impedance were measured, respectively. The characteristics of grounding impedance according to frequency were identified. Result: There was little difference in the measurement results of the grounding resistance between general grounding rods and needles-typed grounding rods. In a frequency range lower than 62.5kHz, there was little difference in the measurement results of the grounding resistance between general grounding rods and needles-typed grounding rods. In a frequency range higher than 62.5kHz, the grounding impedance of needles-typed grounding rods was reduced by about 15% than the grounding impedance of general grounding rods. Conclusion: In the commercial frequency domain, it is effective to connect several grounding rods (common grounding) to lower the grounding resistance value. In the frequency domain of several kHz or more, it is expected that needles-typed grounding rods can effectively reduce the ground potential rise due to the grounding current.

Analysis on Differences in Dynamic Stability of Lower Extremity Caused by Unbalance of Hamstring/Quadriceps Ratio During Drop-landing (드롭랜딩 시 Hamstring/Quadriceps ratio 불균형에 따른 하지의 동적 안정성 차이 분석)

  • Hong, Wan-Ki;Kim, Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.1
    • /
    • pp.49-56
    • /
    • 2015
  • Objectives : The purpose of this study was to present quantitative data and basic references to decrease the accident risk of soccer instructors. Methods : To obtain data, we conducted an investigation on how H/Q ratio affects the dynamic stability of the lower extremity at the time of drop landing. The study targeted 13 soccer players from C University who have not had any injuries or wounds in the lower extremity joints and in any other parts of their bodies over the last 6 months. By using CMIS (USA), the players were divided into two groups according to H/Q ratios higher and lower than 69%, respectively. The subjects in each group were instructed to perform a drop landing. Results : The H/Q ratio did not affect the maximal flexion angle of the knee joints at the time of drop landing. In addition the dominant group with a relatively high H/Q ratio was observed to have increased time to reduce shock and to efficiently absorb the ground reaction force during drop landing. Also, the dominant group with a relatively high H/Q ratio utilized the strong performances of the antagonistic muscles around the hamstrings and the controlled rotatory powers of the thighs that were applied to the tibias supported by the ground. Finally, H/Q ratio, load factors, and mean and maximum EMG were significantly negatively related, whereas GRFx showed a positive relationship. In fact, these factors all affected the impact of the load from the H/Q ratio to the knee joints. Conclusion : From these findings it can be concluded that unbalanced H/Q ratio can be considered as a predictor of knee joint injury at the time of drop landing.

Countermeasures for Flood Protection of Power Facility at Substation and Ground (수변전실 및 지상 전력기기 침수방지 대책에 관한 연구)

  • Kim, Gi-Hyun;Choi, Myeong-Il;Bae, Suk-Myong;Lee, Jae-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.78-84
    • /
    • 2008
  • Inundation of substation and ground power equipment broke out every summer season in low-lying downtown and low-lying shore by localized heavy rain, typhoon and tidal wave. In case inundation excluding the exchanging cost of equipment, it occurs a great economic and social loss owing to recovery time and events of electric shock occur by inundation electrical facility. So we researched the installation situation of substation and power equipment and inundation loss at Flood Danger Area. And we analyzed refutation or law relating to the flood protection counterplan of US, England Australia. We present flood protection countermeasures by survey and analyzing the internal standard and his paper will be used to resent a reform proposal of electrical feinted law about flood protection.

A Study on the Measurement of Electric Resistance of Footwear (신발의 전기저항 측정에 관한 연구)

  • Choi, Sang-Won;Lee, Seokwon
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.56-62
    • /
    • 2013
  • The occurrence of the ventricular fibrillation is directly dependent on the magnitude and duration of the current. The current which flows through the human body is proportional to the touch voltage applied across the body and is in inverse proportion to the impedances in the circuit. The circuit impedances consist of human body impedance, line impedance, equipment impedance, earth terminal impedance and impedance of shoes which a person put on. The impedance of shoes greatly affect the severity of the electric accidents. The human body impedances relevant to the contact areas, contact conditions, current paths and touch voltages are already determined in the IEC 60479-1. However, the impedance of shoes is ignored or substituted by a simple value because of the absence of the sufficient data. For example, the impedance of shoes plus ground contact resistance is postulated to be $1,000{\Omega}$ in the IEC 61200-612. In IEEE 80, the shoe resistance plus ground contact resistance is assumed to be bare foot with ${\rho}/4b{\Omega}$. In this paper, we measured and analyzed the impedance of shoes with respect to conditions such as applied weight, environment variables and voltages. The results showed that the impedance of shoes is dependent on environment variables regardless of the types of shoes. Most of shoes showed the correlation with the applied force, whereas a few shoes showed characteristics related to the applied voltage. In terms of severity of electric shock, one thirds of test samples indicated to be dangerous in saltwater conditions.

Development of an integrated approach for Algerian building seismic damage assessment

  • Boukri, Mehdi;Farsi, Mohammed Naboussi;Mebarki, Ahmed;Belazougui, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.471-493
    • /
    • 2013
  • This paper presents a framework for seismic damage evaluation for Algerian buildings adapted from HAZUS approach (Hazard-United States). Capacity and fragility curves were adapted to fit the Algerian building typologies (Reinforced Concrete structures, Confined or Non-Confined Masonry, etc). For prediction purposes, it aims to estimate the damages and potential losses that may be generated by a given earthquake in a prone area or country. Its efficiency is validated by comparing the estimated and observed damages in Boumerd$\grave{e}$s city, in the aftermath of Boumerd$\grave{e}$s earthquake (Algeria: May $21^{st}$ 2003; $M_w$ = 6.8). For this purpose, observed damages reported for almost 3,700 buildings are compared to the theoretical predictions obtained under two distinct modelling of the seismic hazard. In one hand, the site response spectrum is built according to real accelerometric records obtained during the main shock. In the other hand, the effective Algerian seismic code response spectrum (RPA 99) in use by the time of the earthquake is considered; it required the prior fitting of Boumerd$\grave{e}$s site PGA (Peak Ground Acceleration) provided by Ambraseys' attenuation relationship.

A Study on the Grounding Resistance Effects of Power Transformer in Electric Distribution Systems (배전계통에서 전력용 변압기의 접지저항 영향에 관한 연구)

  • Kim, Kyung-Chul;Jung, Ji-Won;Lee, Kyu-Jin;Lee, Kang-Soo;Choi, Sun-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.113-119
    • /
    • 2010
  • A safe grounding design is used for providing means to carry electric currents into the earth under fault conditions without exceeding any operating limits and for assuring that a person in the vicinity of grounded facilities is not exposed to danger of critical electrical shock. Transformer neutral point grounding is for the purpose of controlling the voltage to earth within tolerable limits under a line-to-ground fault. Transformer frame grounding is for the purpose of minimizing the hazardous potential within safety criteria appearing at the faulted equipment. ills paper deeply investigates the grounding resistance effects of distribution power transformers by analysing the neutral to eatth voltages and touch voltages when the fault occurs.

Measurement of Vibration Signals of a Gun Barrel Type Structure using Mechanical Filter (기계적 필터를 이용한 포신형상 구조물의 진동신호 측정)

  • Ryu, B.J.;Lee, G.S.;Shin, G.B.;Oh, B.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.181-184
    • /
    • 2007
  • This paper deals with the method of vibration measurement of a gun barrel structure using mechanical filter. When a bullet with high speed is moving within a gun barrel type structure with low bending vibration frequencies, it is difficult to measure the bending vibration signals of the structure. For example, noncontact type sensors such as displacement or velocity sensor are not appropriate for the measurement of vibrational signals because of the movement effect of the equipment frame through the moving structures or effect of the ground vibration. One of contact type sensors such as accelerometer is profitable for measurement of vibrational signals because of its wide measurement ranges. In the case of a gun barrel structure including high vibrational signals like shock waves, however, it is necessary to propose vibration measurement method filtering high frequencies. The purpose of the paper is to propose the proper vibrational measurement technique filtering high frequencies of a gun barrel type structure.

  • PDF

Spin-up, Spring-back Load Analysis of KC-100 Nose Landing Gear using Explicit Finite Element Method (외연적 유한요소법을 이용한 KC-100 전방착륙장치 Spin-up, Spring-back 하중 해석)

  • Park, Ill-Kyung;Kim, Sung-Jun;Ahn, Seok-Min
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.51-57
    • /
    • 2011
  • The spin-up and the spring-back are most severe load cases in the aircraft landing gear design. These load cases are caused by reciprocal action of complex physical phenomenon such as the friction between a tire and ground, inertia of the rotation of a tire and the flexibility of a landing gear structure. Generally, the empirical formula or the theoretical formula is used to calculate the spin-up and spring-back load in the early stage of the development program of the aircraft landing gear. After the materialization of the design of a landing gear, spin-up and spring-back load are acquired by the free drop test. In this study, the spin-up and the spring-back load of the rubber shock absorber type KC-100 nose landing gear are calculated by the explicit finite element analysis. Through this analysis, more accurate and realistic spin-up and spring back loads could be applied to the early phase of the development of the aircraft landing gear.

Residual seismic performance of steel bridges under earthquake sequence

  • Tang, Zhanzhan;Xie, Xu;Wang, Tong
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.649-664
    • /
    • 2016
  • A seismic damaged bridge may be hit again by a strong aftershock or another earthquake in a short interval before the repair work has been done. However, discussions about the impact of the unrepaired damages on the residual earthquake resistance of a steel bridge are very scarce at present. In this paper, nonlinear time-history analysis of a steel arch bridge was performed using multi-scale hybrid model. Two strong historical records of main shock-aftershock sequences were taken as the input ground motions during the dynamic analysis. The strain response, local deformation and the accumulation of plasticity of the bridge with and without unrepaired seismic damage were compared. Moreover, the effect of earthquake sequence on crack initiation caused by low-cycle fatigue of the steel bridge was investigated. The results show that seismic damage has little impact on the overall structural displacement response during the aftershock. The residual local deformation, strain response and the cumulative equivalent plastic strain are affected to some extent by the unrepaired damage. Low-cycle fatigue of the steel arch bridge is not induced by the earthquake sequences. Damage indexes of low-cycle fatigue predicted based on different theories are not exactly the same.

Observation of early photons of Gamma-ray bursts from UFFO/Lomonosov

  • Jeong, Soomin;Park, I.H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.64.4-65
    • /
    • 2016
  • Observations of the early photons from evolution of optical afterglows or internal shock provides the crucial clues on the nature of the bursts and environments. Hundreds of GRBs afterglow observations in multi-wavelength region have been made mainly thanks to the fast (~ 60 seconds after the trigger) localisation GRB by Swift and its fast alert to the ground telescope. It helps to improve our understandings tremendously, however many enigmas still remain, such as burst mechanism, transition prompt emission to the afterglow, early optical flash, rise phase of the early optical light curve and some missing afterglows. They could be addressed by fast slewing and multi colour and IR follow-up by future telescopes. The primary aim of UFFO/Lomonosov is to follow up optical fast ever, within a couple of seconds after trigger by onboard X-ray telescope. Its optical FOV is $30{\times}30degrees$. As a key instrument, the Slewing Mirror to redirect the optical beam from GRBs rapidly to the Ritchey-Chretien telescope. The status and launch schedule of the UFFO/Lomonosov and its test performance will be reported and prospects for the next missions will be discussed.

  • PDF