• Title/Summary/Keyword: Ground Remote Sensing

Search Result 843, Processing Time 0.027 seconds

A STUDY OF LOW-LEVEL BOUNDARY-LAYER TEMPERATURE INVERSION EVENTS IN TAIWAN

  • Liou, Yuei-An;Yan, Shiang-Kun;Wang, Kuo-Chung
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.320-323
    • /
    • 2006
  • Temperature inversion may cause air pollution problems because air pollutants cannot be dissipated through vertical motion of the atmosphere and are accumulated near the surface. The air quality is worsen gradually if an inversion event lasts for a long time. An inversion event is defined as consecutive temperature profiles with occurrence of the temperature inversion condition. In this paper, temperature inversion events over three major cities on Taiwan are analyzed. They are measured by ground-based microwave radiometers installed in Taipei, Taichung, and Kaohsiung from 2002 to 2004 by the Environment Protection Administration (EPA) of Taiwan. Characteristics of temperature inversion events at the three cities are extracted using different classification methods.

  • PDF

Urban sprawl and its impact on the land cover-a geospatial study

  • Jayakumar, S.;Enkhbaatar, Lkhagva;Heo, Joon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.4
    • /
    • pp.73-78
    • /
    • 2008
  • The present study was aimed to estimate the urban sprawl in a historical city of India using series of satellite data between 1968 and 2005(37 years) and GIS. The total area of the Tiruchirappalli city was 1991.96 ha during 1968 and it was expanded into 4335.98 ha(117.67%) during 2005. The average growth rate per year was 63.35 ha. This 117.67% growth was at the cost of agriculture land(97.81%) and water body(2.19%). The satellite data used in this study were found to be good source of information for this kind of analysis and further studies are need to estimate the impact of this city expansion on agriculture yield and ground water.

  • PDF

Features of Yellow Sand in SeaWiFS Data and Their Implication for Atmospheric Correction

  • Sohn, Byung-Ju;Hwang, Seok-Gyu
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.404-408
    • /
    • 1998
  • Yellow sand event has been studied using SeaWiFS data in order to examine the aerosol optical characteristics in the Yellow Sea and their influences on the atmospheric correction for the ocean color remote sensing. Two SeaWiFS images of April 18 and April 25, 1998, representing Yellow Sand event and clear-sky case respectively, are selected for emphasizing the impact of high aerosol concentration on the ocean color remote sensing. It was shown that NASA's standard atmospheric correction algorithm treats yellow sand area as either too high radiance or cloud area, in which ocean color information is not generated. SeaWiFS aerosol optical thickness is compared with nearby ground-based sun photometer measurements and also is compared with radiative transfer simulation in conjunction with yellow sand model, examining the performance of NASA's atmospheric correction algorithm in case of the heavy dust event.

  • PDF

Applicability Assessment of the Expanded Waste Glass Material as Planting Basis Using Ground-Based Remote Sensing

  • Hamamoto, R.;Gotoh, K.;Ikio, D.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.546-548
    • /
    • 2003
  • The expanded waste glass material is one of the recycling materials. We investigated whether the expanded waste glass material is useful as planting basis and effective as heat insulation. We examined the difference of the materials by using vegetation index and temperature. The combination of the improved soils and the improved glasses marked higher vegetation index than other mixture materials. Moreover, this combination material is excellent than other ones to heat insulation. Therefore, it suggests that the expanded waste glass material has high potential to be used as a material for planting basis.

  • PDF

Hydrogeological Survey and Satellite Remote Sensing in the Dunhuang Area

  • Piao, Chunze;Tanimoto, Chikaosa;Koizumi, Keigo;Li, Zuixiong;Wang, Xudong;Guo, Qinglin
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.444-446
    • /
    • 2003
  • Mogao Grottos are located at the eastern foot of the Mingsha Mountain, 25km southeast of Dunhuang City. The caves were excavated into the cliff on the west bank of the Daquan River. The wall paintings in the caves are subject to the severe deterioration generated by recrystallization of salt. It relates with the movement of water/moisture in rock formation. Through the satellite image analysis and geological survey it has been clarified that the movement of ground water is governed by the fault system. The geographical nature is specified by the aggressive tectonic movement from the south.

  • PDF

Preliminary Biotop Mapping Using High-Resolution Satellite Remote Sensing Data

  • Shin, Dong-Hoon;Lee, Kyoo-Seock
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.856-858
    • /
    • 2003
  • Biotop map can be utilized in the urban area for nature conservation and impact assessment for the proposed activities. High resolution satellite data such as IKONOS and KOMPSAT1-EOS were used to classify land use activities in biotop mapping. After land use classification, field -check was done to survey the wildlife and vegetation. These maps were combined and the boundaries were delineated to produce the biotop map. Within the boundary the characteristics of each polygon were identified, and named. This study was carried out at Daedok Science Town in Taejeon Metropolitan Area. The purpose of this study is to produce the biotop map using high resolution remote sensing data together with other ground data.

  • PDF

Assessing Sea Surface Temperature in the Yellow Sea Using Satellite Remote Sensing Data

  • Lee, Kyoo-seock;Kang, Hee-Sook
    • Korean Journal of Remote Sensing
    • /
    • v.6 no.1
    • /
    • pp.39-47
    • /
    • 1990
  • The first Marine Observation Satellite(MOS) was launched by National Space Development Agency of Japan on February 19, 1987, and it is equipped with three sensons covering visible, infrared, and microwave region. One of them is Visible and Thermal Infrared Radiometer(VTIR) whose main objective is to detect the Sea Surface Temperature(SST). The objective of this study was to process the MOS data using Cray-2 supercomputer, and to assess the SST in the Yellow Sea. In order to implement this objective, the linear regression model between the ground truth data and the corresponding digital number of VTIR in MOS was used to establish the relationship. After testing the significance of the regression model, the SST map of the whole Yellow Sea was derived based on the model. The digital SST map representing the study area showed certain pattern about the SST of Yellow Sea in March and April. In conclusion, the VTIR data in MOS is also useful in investigating SST which provides the information about the Yellow Sea water current in the spring.

Efficiency of Superconducting Gravimeter Observations and Future Prospects

  • Neumeyer Juergen
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.15-29
    • /
    • 2005
  • Superconducting Gravimeters (SG) are the most sensitive instruments for measuring temporal gravity variations. The gravimeter is an integrating sensor therefore the gravity variations caused by different sources must be separated for studying a special effect by applying different models and data analysis methods. The present reduction methods for gravity variations induced by atmosphere and hydrosphere including the ocean and the detection and determination of the most surface gravity effects are shown. Some examples demonstrate the combination of ground (SG) and space techniques especially the combination of SG with GRACE satellite derived temporal gravity variations. Resulting from the performance of the SG and the applied data analysis methods some proposals are made for future SG applications.

USING TRMM SATELLITE C BAND DATA TO RETRIEVE SOIL MOISTURE ON THE TffiETAN PLATEAU

  • Chang Tzu-Yin;Liou Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.737-740
    • /
    • 2005
  • Soil moisture, through its dominance in the exchange of energy and moisture between the land and atmosphere, plays a crucial role in influencing atmospheric circulation. To identify the crucial role, it is a common agreement that knowledge of land surface processes and development of remote sensing techniques are of great important scientific issues. This research uses TRMM satellite C band (10.65 GHz) data to retrieve soil moisture on the Tibetan Plateau in Mainland China. Two retrieval schemes that are implemented include the t-(J) model and the R model. The latter one is developed based on a land surface process and radiobrightness (R) model for bare soil and vegetated terrain. Compared with the in situ ground measurements, the soil moisture retrieved from the R model and the t-(J) model with vegetation information obviously appear more accurate than that derived from bare soil model. Retrieved soil moisture contents from the two inversion models, R model and t-(J) model, have a similar trend, but the former appears to be superior in terms of correlation coefficient and bias compared with in situ data. In the future, we will apply the R model with the TRMM 10.65 GHz brightness temperature to monitor long-term soil moisture variation over Tibet Plateau.

  • PDF

THE SELECTION OF ALTITUDE AND INCLINATION FOR REMOTE SENSING SATELLITES (원격탐사 위성의 고도와 궤도기울기 결정)

  • 이정숙;이병선
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.244-255
    • /
    • 1995
  • The success of a satellites mission is largely depended upon the choice of an appropriate orbit. In the case of a remote sensing satellite which observes the Earth, there exits an optimum solar elevation angle depending on the mission. Therefore a sun-synchronous orbit is suitable for a remote sensing mission. The second-order theory for secular perturbation due to non-symmetric geopotential was described. To design a sun-synchronous orbit, a constraint condition on regression of node was derived. A algorithm to determine the altitude and the inclination was introduced using this constraint condition. As practical examples, the altitudes and the inclinations of four remote sensing satellites were calculated. The ground tracks obtained by the orbit propagator were used to verify the resulting sun-synchronous orbital elements.

  • PDF