• Title/Summary/Keyword: Ground Radar

Search Result 648, Processing Time 0.026 seconds

Detection of Delamination inside Concrete Using Ground Penetrating Radar (GPR을 이용한 콘크리트 내 공동 탐사)

  • Rhim, Hong-Chul;Lee, Soong-Jae;Woo, Sang-Kyun;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.177-184
    • /
    • 2003
  • A series of experimental work has been conducted to evaluate the capability of Ground Penetrating Radar (GPR) system in detecting delamination inside concrete. Three antenna at 900 MHz, 1000 MHz, and 1500 MHz frequency are used in the experiments for laboratory size specimens, and 400 MHz antenna has been used for a large size specimen. The laboratory size specimens have the dimensions of 1,000 mm (length) ${\times}$ 600 mm (width) ${\times}$ 140 mm (thickness) with a delamination of 200 mm (length) ${\times}$ 600 mm (width) ${\times}$ 140 mm (thickness). The cover depth of the delamination is varied as follows: 20 mm, 30 mm, 60 mm, and 70 mm. In all cases, the delamination has been successfully identified. The property of three frequencies was seized about detecting delamination. Also, it was shown that the image results in GPR were improved by signal processing.

Forward-Looking GMTI and Estimation of Position and Velocity Based on Millimeter-Wave(W-Band) FMCW SAR (밀리미터파(W 밴드) FMCW SAR 기반 전방의 이동지상표적 탐지 및 위치와 속도 추정)

  • Lee, Hyukjung;Chun, Joohwan;Song, Sungchan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.459-469
    • /
    • 2017
  • An air-to-ground guidance missile aimed to hit a main battle tank(MBT) should detect a ground moving target and estimate the target position to guide. In this paper, we detect a front ground moving target by using FMCW(Frequency Modulated Continuous Wave) and estimate the position by forward-looking SAR(Synthetic Aperture Radar) via scanning certain front ground section by steering a beam with narrow beamwidth left to right mechanically. Also, by MLE(Maximum Likelihood Estimation), degree of how fast the target approach or recede from the radar can be figured out from the estimated radial velocity of the moving target. Subsequently, we generate a radar image via corrected matched filter from phase history including the radial velocity.

Characteristics of Ground-Penetrating Radar (GPR) Radargrams with Variable Antenna Orientation

  • Yoon Hyung Lee;Seung-Sep Kim
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Ground penetrating radar (GPR) survey is a geophysical method that utilizes electromagnetic waves reflecting from a boundary where the electromagnetic property changes. As the frequency of the antenna is about 25 MHz ~ 1 GHz, it is effective to acquire high resolution images of underground pipe, artificial structure, underground cavity, and underground structure. In this study, we analyzed the change of signals reflected from the same underground objects according to the arrangement of transceiver antennas used in ground penetrating radar survey. The antenna used in the experiment was 200 MHz, and the survey was performed in the vertical direction across the sewer and the parallel direction along the sewer to the sewer buried under the road, respectively. A total of five antenna array methods were applied to the survey. The most used arrangement is when the transmitting and receiving antennas are all perpendicular to the survey line (PR-BD). The PR-BD arrangement is effective when the object underground is a horizontal reflector with an angle of less than 30°, such as the sewer under investigation. In this case study, it was confirmed that the transmitter and receiver antennas perpendicular to the survey line (PR-BD) are the most effective way to show the underground structure. In addition, in the case where the transmitting and receiving antennas are orthogonal to each other (XPOL), no specific reflected wave was observed in both experiments measured across or parallel to the sewer. Therefore, in the case of detecting undiscovered objects in the underground, the PR-BD array method in which the transmitting and receiving antennas are aligned in the direction perpendicular to the survey line taken as a reference and the XPOL method in which the transmitting and receiving antennas are orthogonal to each other are all used, it can be effective to apply both of the above arrangements after setting the direction to 45° and 135°.

Hourly Rainfall Surface Prediction with Meteorological Radar Data (기상레이더 자료를 이용한 시우량곡면 예측)

  • 정재성;이재형
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.187-195
    • /
    • 1996
  • In this study, a methodology for the hourly prediction of rainfall surfaces was applied to the Pyungchang river basin at the upstream of South Han river with meteorological radar and ground rainfall data. The methods for the exclusion of abnormal echoes, and suppression of ground clutter, and the augmentation of attenuation effects associated with rainfall phenomena were reviewed, and the relationship between radar reflectivity (Z) and rainfall rate (R) was analyzed. The transformation of augmented radar reflectivities into the rdar rainfall surfaces was carried out, and afterward they were synthesized with the ground rainfall data generating the hourly rainfall surfaces. For the prediction of hourly rainfall surface, the moving factors of rainfall field estimated by the cross correlation coefficient method and the temporal variation of radar rainfall intensities were considered. The synthesized hourly rainfall surfaces were used to predict the hourly rainfall surfaces up to 3 hours in advance and subsequently the results were compared with the measured and the synthesized. It seems that the prediction method need to be verified with more data and be complemented further to consider the physical characteristics of rainfall field and the topography of the basin.

  • PDF

Evaluation of GPM satellite and S-band radar rain data for flood simulation using conditional merging method and KIMSTORM2 distributed model (조건부합성 기법과 KIMSTORM2 분포형 수문모형을 이용한 GPM 위성 강우자료 및 Radar 강우자료의 홍수모의 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Jang, Won Jin;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This study performed to simulate the watershed storm runoff using data of S-band dual-polarization radar rain, GPM (Global Precipitation Mission) satellite rain, and observed rainfall at 21 ground stations operated by KMA (Korea Meteorological Administration) respectively. For the 3 water level gauge stations (Sancheong, Changchon, and Namgang) of NamgangDam watershed ($2,293km^2$), the KIMSTORM2 (KIneMatic wave STOrm Runoff Model2) was applied and calibrated with parameters of initial soil moisture contents, Manning's roughness of overland and stream to the event of typhoon CHABA (82 mm in watershed aveprage) in $5^{th}$ October 2016. The radar and GPM data was corrected with CM (Conditional Merging) method such as CM-corrected Radar and CM-corrected GPM. The CM has been used for accurate rainfall estimation in water resources and meteorological field and the method combined measured ground rainfall and spatial data such as radar and satellite images by the kriging interpolation technique. For the CM-corrected Radar and CM-corrected GPM data application, the determination coefficient ($R^2$) was 0.96 respectively. The Nash-Sutcliffe efficiency (NSE) was 0.96 and the Volume Conservation Index (VCI) was 1.03 respectively. The CM-corrected data of Radar and GPM showed good results for the CHABA peak runoff and runoff volume simulation and improved all of $R^2$, NSE, and VCI comparing with the original data application. Thus, we need to use and apply the radar and satellite data to monitor the flood within the watershed.

Modelling and Simulation Resolution of Ground-Penetrating Radar Antennas

  • Alsharahi, G.;Mostapha, A. Mint Mohamed;Faize, A.;Driouach, A.
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2016
  • The problem of resolution in antenna ground-penetrating radar (GPR) is very important for the investigation and detection of buried targets. We should solve this problem with software or a numeric method. The purposes of this paper are the modelling and simulation resolution of antenna radar GPR using three antennas, arrays (as in the software REFLEXW), the antenna dipole (as in GprMax2D), and a bow-tie antenna (as in the experimental results). The numeric code has been developed for study resolution antennas by scattered electric fields in mode B-scan. Three frequency antennas (500, 800, and 1,000 MHz) have been used in this work. The simulation results were compared with experimental results obtained by Rial and colleagues under the same conditions.

Homeland Defense Radar-Hawaii(HDR-H) for Anti-Ballistic Missile (하와이 배치 탄도미사일 방어용 레이더)

  • Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.258-259
    • /
    • 2018
  • The United States has deployed and operates a ballistic missile defense system to defend the homeland from ballistic missile attacks launched from direct and potential threats. The Missile Defense Agency has deployed the Aegis BMDs, Sea-based X-band radars(SBX), Ground-Based Interceptors(GBI), Early Warning Radars and THAADs. In addition, the Homeland Defense Radar-Hawaii(HDR-H) will be deployed in Hawaii. The HDR-H is expected to improve defensive ability to ballistic missile threats in the Asia-Pacific region.

  • PDF

Imaging of Steel Bars Embedded inside Mortar Specimens for Nondestructive Testing

  • Rhim, Hong-Chul;Park, Kyung-Hyun
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.139-144
    • /
    • 2000
  • Ground Penetrating Radar (GPR) with 1 GHz antenna has been used to locate a steel bar embedded inside laboratory-prepared mortar specimens. Four mortar specimens are made with the dimensions of 100 cm (length) x 100 cm (width) x 14 cm (depth). One specimen had no bars and the other three specimens had a Dl9 steel bar at 4, 6. and 8 cm depth. As a part of the experimental work, the dielectric constants of mortar specimens are measured during curing. As the curing time increased. the dielectric constant decreased with decreasing moisture content inside the specimen. The steel bar embedded inside mortar specimens has been successfully identified in all three cases. The results using signal processing scheme developed in this study significantly improved the output of a commercially available radar system.

  • PDF

Relationship between Forest Stands Characteristics and NASA/JPL AIRSAR Polarimetric Data Over Mountainous Terrain

  • Kim, Du-Ra;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.435-440
    • /
    • 2002
  • The objective of this study is to analyze the relationship between polarimetric radar backscatters and stand characteristics over the mountainous forest area. L- and P-band full polarimetric airborne SAR data obtained in September 2000 were processed to compare with forest stand maps and ground collected stand variables. After the geometric registration of SAR image, mean radar backscatters were extracted for those ground plots where the stand parameters, such as tree height, DBH, and basal area, were measured during and after the SAR data acquisition. Preliminary analysis was focused on the topographic influence of radar backscattering under the homogeneous forest stand condition. Topographic effects, assessed by the local incidence angles, were different obvious in L-band data while it was not clear with P-band data.

  • PDF

Radar Remote Sensing of Soil Moisture and Surface Roughness for Vegetated Surfaces

  • Oh, Yi-Sok
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.427-436
    • /
    • 2008
  • This paper presents radar remote sensing of soil moisture and surface roughness for vegetated surfaces. A precise volume scattering model for a vegetated surface is derived based on the first-order radiative transfer technique. At first, the scattering mechanisms of the scattering model are analyzed for various conditions of the vegetation canopies. Then, the scattering model is simplified step by step for developing an appropriate inversion algorithm. For verifying the scattering model and the inversion algorithm, the polarimetric backscattering coefficients at 1.85 GHz, as well as the ground truth data, of a tall-grass field are measured for various soil moisture conditions. The genetic algorithm is employed in the inversion algorithm for retrieving soil moisture and surface roughness from the radar measurements. It is found that the scattering model agrees quite well with the measurements. It is also found that the retrieved soil moisture and surface roughness parameters agree well with the field-measured ground truth data.