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Radar Remote Sensing of Soil Moisture and Surface
Roughness for Vegetated Surfaces
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Abstract : This paper presents radar remote sensing of soil moisture and surface roughness for
vegetated surfaces. A precise volume scattering model for a vegetated surface is derived based on the first-
order radiative transfer technique. At first, the scattering mechanisms of the scattering model are analyzed

for various conditions of the vegetation canopies. Then, the scattering model is simplified step by step for
developing an appropriate inversion algorithm. For verifying the scattering model and the inversion
algorithm, the polarimetric backscattering coefficients at 1.85 GHz, as well as the ground truth data, of a
tall-grass field are measured for various soil moisture conditions. The genetic algorithm is employed in the
inversion algorithm for retrieving soil moisture and surface roughness from the radar measurements. It is
found that the scattering model agrees quite well with the measurements. It is also found that the retrieved

soil moisture and surface roughness parameters agree well with the field-measured ground truth data.

Key Words : Scattering model, inversion algorithm, soil moisture, surface roughness, vegetated surfaces,

genetic algorithm.

1. Introduction

Remote sensing of soil moisture is essential in
agriculture, global change monitoring, and other
hydrological process. Since the sensitivity of the radar
response on surface roughness is comparable to or
even higher than that on soil moisture, the surface
roughness might be considered in the soil moisture
estimation (Ulaby et al., 1982). Radar scattering from
bare surfaces depends on only soil moisture and
surface roughness, and the polarimetric radar
response can be modeled quite accurately for bare
surfaces (Oh et al., 2002). Based on the accurate

scattering model, both the soil moisture and surface
roughness can be retrieved from the polarimetric
backscatter measurements with a good accuracy for
bare-soil surfaces (Oh, 2004: Oh 2006). However, for
vegetation-covered surfaces, the soil moisture
retrieval is a challenging problem because of
complicate scattering mechanisms in the vegetation
canopy.

The most popular scattering model for vegetated
surfaces is the radiative transfer model (Tsang et al.,
1985). This scattering model, however, is too
complicate to be used for the inversion algorithm.

Therefore, simplified scattering models are usually
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employed for soil moisture estimation. Regression
models for the backscattering coefficients of a
specific vegetation canopy can be used to get soil
moisture from radar response as in (De Roo ef al.,
2001). The ratios of different radar channels
(polarization or frequency) can be regressed against
the soil moisture content. Then, the regression curve
can be used to retrieve the soil moisture contents from
the radar measurements. In this approach the
vegetation biomass and surface roughness are
ignored. The other approach would be an inversion of
a simplified scattering mode!, so-called water-cloud
model, which represents the vegetation canopy as
uniformly distributed water particles like a cloud. The
parameters of the water-cloud model are derived by
fitting the model with experimental data as in
Bindlish and Barros (2001) and Sikdar et al. (2005).
The model parameters are dependant on the
vegetation type and the polarization.

In this paper, at first, the radiative transfer model is
formulated, analyzed and simplified for computing
the radar backscattering coefficients of vegetated
surfaces. The backscattering coefficients for a tall-
grass field are measured with a polarihletric L-band
scatterometer during two months, and at the same
time, the biomasses, leaf moisture contents, and soil
moisture contents are also measured. Then the
measurement data are used to estimate the model
parameters for vv-, hh-, and vh-polarizations. The
scattering model for tall-grass-covered surfaces is
used as the cost function of a genetic algorithm to
retrieve the soil moisture content and the surface

roughness from the radar measurements.

2. Radiative Transfer Scattering Model

The radiative transfer scattering model is to

compute polarimetric microwave scattering from

Fig. 1. Five different scaftering mechanisms.

randomly distributed scatterers which is a heuristic
treatment of multiple scattering by assuming no
correlation between multiple scattered fields so that
the addition of intensity terms, instead of the addition
of fields, is appropriate. The first-order radiative
transfer scattering model includes five basic
scattering mechanisms as shown in Fig. 1; ie., (1)
directly backscattering from the vegetation canopy,
(2) forward-scattering from the vegetation layer and
then reflecting from the soil surface, (3) reflecting
from the soil surface and then forward-scattering
from the vegetation layer, (4) reflecting from the soil
surface, then backscattering from the vegetation
layer, and reflecting again from the soil surface, and
(5) direct backscatter contribution of the underlying
soil surface with two-way attenuations through the
vegetation layer.

The backscattering coefficients can be obtained by
multiplying 47 cos 6y to the transformation matrix
elements,

T =secOlEsAs B )

+{EsD4E4'|R E3An Ey'

+E4AnE;' R(E\DIE'}
+(EsDsE4"\R EsAn B> R (EDDIET")
+(E4D4yE" YW (EIDIE )]

with [A gl = [Ex' Pu Edlj Cu 2)

The first, second, third, fourth, and fifth terms of
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above equation correspond to the scattering
mechanism (1), (2), (3), (4) and (5), respectively. The
subscripts 1, 2, 3, and 4 correspond to the wave
directions of \, /, ./, and \, respectively. As shown
in the above equation, the 4 X 4 transformation matrix
T can be computed using the phase matrices P , the
eigen matrices f, the reflectivity matrices R, the
diagonal extinction matrices f and the Stokes’
scattering operator matrix L (Ulaby and Elachi, 1990).
The wave attenuation through the vegetation
canopy is accounted using the Foldy’s approximation
(Tsang et al., 1985). The diagonal terms of the
diagonal matrices D can be obtained from the eigen
values of coherent propagation /3;.
D;= oDiOP)zsecd 3)
where
Bi=-(Re My, + Re My) + 0.5 m; )
andmy=-r-r',my=-r+r,my=r-r . my=r+r", and
r= (M + My + AMpuMip) " (5)
The elements of the averaged scattering matrix M
can be obtained by averaging the scattering matrix

over the orientation and size distribution of the rice

leaves;
M =<5 (0. 0.) > 2xNIk. (6)

The elements of the associate eigen matrix £ can also

be computed from the averaged scattering matrix,

1 b5 by |, 2

— |b1 |2 by b 1
E = s *

2Re(by) 1+biby 1+b1by  2Re(hn)

2Im(by) -i(1-bib2) i(1-b1b) 2Im(bn)
where

2Mp, 2My,
b= hv b= [ . )
My - My +r My + My -1

The reflectivity matrix can be computed using the

Fresnel reflection coefficients.

R.2 0 0 0
— | o |rRP 0 0
R = . NG
0 0 Re(R\R})  -Im(R,R}p)
0 0  ImRRYD Re(RR})

The subscripts & and / of (2) denote the wave
directions, and the subscripts i and j denote the ij'"
element of the matrix. The phase matrix P is the
average of the Mueller matrix over the distribution of
particles in terms of size, shape, and orientation,
where the Mueller matrix elements are the covariance
between the scattering matrix elements (Ulaby and
Elachi, 1990).

P=1] QJ I L(0:0:6.0,p(a.b.8;pda db d6; de; (10)
a b

where L is the Mueller matrix as in Tsang et al.
(1985) and Ulaby and Elachi (1990) and p is the
probability density function for four random
variables; e.g., size and shape (a X b), and horizontal
and vertical angles. The constant Cy ;; for each

scattering mechanism can be summarized as

1- €X {ﬂ:(g»a)s)secgs + /))/(7[ - OnP)sect}d]

Cypii= ,
T BiOupysect + Bj(m - Bp.p)secty
BT =0.0)d sech] _ L-B7 - 0y p)d sechy]
Cap4= - - .
T =Bt - Bspysects + B - o pisechy
ol BitB.00d secb,) _ [ (00 d)d sechy] (1D
Cangj= L
Y _/6) i (9s~¢x)SCC9x + ﬂj(go,QD[)SCCQQ
1 - ol 1B 0.805ech,+ B16,0) secy)d)
Cayji=-

Bim - Osp)secOs+ BiOopisecty

The scattering matrix is the basis for the
computation of the scattering coefficients of any
vegetated surfaces. The scattering matrix element for
pg-polarization Sy, is s - S - §; where the scattering

matrix field S is defined as
_ eikr: o a .
E(r)= TS (ks ki) + giEop. (12)

The computation of the scattering matrix is quite

complicate for vegetation particles such as leaves and
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branches. A leaf can be modeled as a lossy dielectric
thin disk. It was shown that the RCS of a thin leaf can
be computed alternatively by either the physical
optics (PO) model or the generalized Rayleigh-Gans
(GRG) model at microwave frequencies in (Oh and
Hong, 2007). The scattering matrices for the leaves,
for example, can be computed from the equivalent
current distribution induced on the leavers, which can
be obtained using the PO and resistive sheet
approximation. The equivalent current J(7') can be
approximated to a surface current distribution 7SR(7’ )

on the resistive sheet lying on x-y plane as
IEE) =T, (13)
where JP“(7) is the PO surface current on a perfect

conductor, I—'q is the reflection coefficients for a

resistive sheet at g-polarization as

-1 -1
2Rcos8y 2R
h Mo and Ly 7o cosfy (14
ith R o where R is the resistivity of the
wi = —Q) S
Kot &~ 1) v

leaf, 89 = 7 - 0;, and ¢ is the leaf thickness. The
relative permittivity &, of a leaf can be computed by
the empirical formula in (Hallikainen ef al., 1985)
using the gravimetric water content of the leaf. A
branch can be modeled as a lossy dielectric cylinder
for simplicity, and the scattering matrix of an
arbitrarily oriented lossy dielectric cylinder can be

computed as follows;

P T )
Vs Vg Vst hg S Sun
2 fatd 2 Sy > 2l

hs'vs’ hs'hs Shw Shh

NN

~y
VitV Vi

-y
i B h,-](”)

where the primed terms denote the local coordinate

Sw: Svh
St Shi

scattering from a vertical cylinder with a diameter d
and a length /.

2 k()d va Ay AN Ay R
Spg= Tl T(V,"Z)lz st|l)pq (16)

where V can be computed from the incident and

scattered wave directions and the cylinder length in

wavelength, and P,,; can be computed using Bessel
functions, for example, for the vv-polarized wave the
term P,,, can be computed by

Pp= 2 [ m(xoMmO0)sing - (o) m(yoV/B}

m=-—co

+ CIM{H (o) u(yo)/sinS - HSP ol 3o/ BY(17)

cosf K|y ool 1y
xosin B yo

+Cm

where C;M and E‘m are another complicate functions of
the Bessel functions, J,,,, J,,, H), HZ” with arguments
such as xq = kga sin 3 and x| = koa Ve, - cos? . For
other polarization combinations, Py, Pj,., Ppy, can also

be computed similarly with complicate functions.

0
a -10L \\ N =~ ~
S S~ ”‘~\_____,__
20 N
Q /7 " N
(&) / L ]
o 30 ~ .”m :Measured
et —
5 - Ve : Total
@ -40 /' -=== 1G-S
S Y —— VS
® A - V-G-8
@ 50— - = =1-G-V-S
. . . | == |-G-V-G-S
-60
10 20 30 40 50 60 70 80
Angle (Degree)
(@
0 X ——-71-V:S
O : Measured L
: Total 1V-G-S
A0[ = = = = 1-G-S - - = -G-V-S

— . —-G-V-G-S

Y
=]

A
o

Backscatt. Coeff.(dB)
8 g

e |

&
<]

10 20 30 40 50 60 70 80
Angle (Degree)
)
Fig. 2. Contributions of scattering mechanisms on the
backscattering coefficients for (a) hh- and (b) hv-
polarizations.
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Fig. 2 shows the contributions of scattering
mechanisms on the backscattering coefficients for co-
and cross-polarized waves for a vegetated surface
with vegetation height =72 cm, averaged leaf length
Lieq=60 cm, averaged leaf width Wy,~=2 cm, leaf
density Njeqr =800 m-2, soil moisture m,=0.21
cm3/cm3, surface RMS height s=2.35 ¢m, and surface
correlation length /=34.5 cm. The scattering model
agrees quite well with the radar measurements as
shown in Fig. 2.

Fig. 2 also shows that the direct backscatter from
ground (5; I-G-S) is dominant while the ground
double-bounce (4; I-G-V-G-S) affects least on the
backscattering coefficients for co-polarization. For
the cross-polarization, however, the ground single-
bounce terms (2 and 3; I-G-V-S and I-V-G-S) are
comparable with the direct surface backscatter (5; I-
G-S) as shown in Fig. 2(b).

3. Simplification of the Scattering Model

Considering the complexity of the radiative
transfer scattering model, it might be very difficult to
invert the RT scattering model for the retrieval of soil
moisture and surface roughness from the radar
measurements of a vegetated surface, unless the RT
scattering model is simplified enough for the
inversion of the model. For this purpose, the
complicate RT scattering model can be simplified as
in De Roo et al. (2001).

Opg=Opqt + Opa+ Opg3 + O (18)
with
0‘,341 = Opq1 €0sO(1 - T,T PNk, + Ky)
Opg2 = 2T, TRy + R MO pgn
Ohus = P T TyRoR,

0 _
Opga = Uts),ququ

(19)

where 0,1 and 0, are the backward and forward
radar cross section (RCS) per unit volume of
scatterers in the canopy, k is the extinction coefficient
of vegetation canopy, T is the transmissivity of the
canopy, h is canopy height, R is the reflectivity of soil
surface, and o is the backscattering coefficient of the
soil surface.

The second term of (18) represents sum of the
second and third terms of (1), and the third and fourth
equations in (19) represent the fourth and fifth terms
of (1), respectively. For a dense vegetation canopy
the 0,1 will be dominant, while the 69,4 is dominant
for a sparse vegetation canopy. The G(p)q3 term usually
gives minimal effect on total backscatter as shown in
Fig. 2, because of the combination of the reflection,
attenuation and the backscattering mechanism; ie.,
usually 7,7,R,R,<1 for a dense canopy, and Ggql —
0 for a sparse canopy. Therefore the term ogqg can be
ignored without a considerable loss of accuracy. The
O'?,qz may not be negligible especially for the cross-
polarization, because the forward scattering RCS ¢
of a particle included in this term is much higher than
the backscatter RCS ¢ in other terms for the cross-
polarization as shown in Fig. 2 (b).

For the retrieval of soil moisture form radar
measurements, the backscattering coefficient 0¥ need
to be extracted from the RT scattering model, which
seems still very complicate. In order to further
simplify the scattering model, at first, we can assume
a uniform distribution for the orientation angles of the
scatterers in the vegetation canopy, such that k,, = k,,
consequently, 7, = 7, Then the radar backscatter can
be approximated ignoring the ground-crown-ground
term as
08, = 0%, %a )+ 2PR, + R =00, TH20)

Above equation is still not simple enough to be

inverted because the computation of the RCS per unit
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volume, Opy1 OF Opy, is very complicate as in (12)-
(17). It was reported in De Roo er al. (2001) that the
RCS per unit volume is proportional to the area
density of the vegetation water mass »1,, (kg/m?) and
the extinction coefficient is proportional to the
square-root of m,,. The relations were derived from
the analysis of the precise RT scattering model for
various conditions. Therefore, the RCS and the
extinction coefficient can be empirically expressed

with unknown constants.

Opgl = aymylh
Opg2 = armylh 20

K =az\ymylh
with the reflectivity and transmissivity of

R, =T, exp[-(2ks cos 0y 22)
T = expl-xh sec 6)

where Fp is the Fresnel reflectivity, k is wave
number, and @ is incidence angle. The constants aj,
aj, as, as well as the height &, the vegetation water
mass m,, for the canopy, the rms height s, the
dielectric constant &, of the soil surface, in addition to
the radar parameters such as wave number k and
incidence angle 6, should be known to retrieve the
backscatter of the soil surface from the radar
measurement of a vegetation-covered surface.

The well-known ‘water-cloud’ model is the
simplest scattering model for estimation of the radar
backscatter of a vegetated surface. If all canopy-
ground interactions are ignored from (20), then the
water-cloud model can be expressed in the following

form.
Ggq = qul + Tzﬁ?qpq (23)

where the first term is the direct backscatter from a
vegetation canopy, which can be written as
my  cosf

h 2a3/my/h

Above equation may not be valid for the cross-

(1-7% (24)

Opgl = a1

polarization because the canopy-ground interaction
usually can not be ignored for cross-polarization. The
canopy height may also be considered as an unknown
constant, because it is not usually known in advance.
Therefore above equation can be rewritten with an

unknown constant A.
091 =Aym,, cos 0(1 - T%) (25)

where the transmissivity of a canopy can be

represented with an unknown constant B.
T =exp[-By/m,, sec 0] (26)

The simplest scattering model with (23), (25) and
(26) has only three parameters for vegetation,; i.e., the
unknown constants A and B, and the vegetation water
mass m,,. The unknown constant A and B should be
determined for a specific vegetation canopy, and the
vegetation water mass should be provided as well for
the retrieval of the backscatter of a soil surface.

4. Inversion Algorithms

The simplified scattering model can be used for an
inversion algorithm of soil moisture and surface
roughness with determined unknown constants for
vegetation characteristics. One of robust optimization
techniques would be the genetic algorithm (GA) (Oh,
2006). The GA is a global numerical-optimization
process, patterned after the natural processes of
genetic recombination and evolution, which has
advantages over other traditional optimization
techniques, because they are simple to program, and
don’t get stuck in local minima. The algorithm begins
with binary encoding of input parameters, e.g., the
surface rms height s and the soil moisture content #1,.
The random binary bits for the initial 120 chromosomes
are generated using the sequential random numbers.
Then, an optimum chromosome is obtained from the

initial chromosomes by an iterative computation; (1)

—432-



Radar Remote Sensing of Soit Moisture and Surface Roughness for Vegetated Surfaces

Measured backscattering coefficients

l

Genetic Algorithm

Range of
soil moisture
and rms height

Cost function:
Scattering model!
developed in this study

l

Retrieved soil moisture and
surface roughness

Random
numbers

Fig. 3. Flow chart for the GA-based inversion algorithm.

assigning merit to those chromosomes by a cost
function (a scattering model), (2) ranking the
chromosomes and discarding the inferior ones, (3)
mating the superior chromosomes, and (4) mutating a
small portion of the chromosomes to avoid getting
stuck in local minima. Fig. 3 shows the flow chart of
the GA-based inversion algorithm.

Each binary-encoded chromosome is decoded by

the formula

ST @D

where p is one of the surface parameters (s or m,), b;
is the /b binary bit (‘0” or ‘1), N is the number of
binary bits, py and p, are the maximum and the
minimum values of the parameter. The number of
bits N for each input parameter is 6, which gives the
quantization error smaller than 1%.

The cost function for each chromosome is evaluated
using the scattering model described in the previous
section. At first, the polarimetric backscattering
coefficients corresponding to the decoded surface
parameter values of each chromosome are computed
by the model. Then, the estimated backscattering
coefficients are compared with the measurements.
The cost function is defined as a summation of the
weighted difference between the measured and the
estimated vv-, hh-, and hv-polarized backscattering
coefficients. The chromosomes are ranked from the

most-fit to the least-fit, according to their respective

costs using a data-sorting program. Then, 50% of the
inferior chromosomes are discarded and the
remaining superior chromosomes mate each other.
Finally, about 1% of the bits in the list of all
chromosomes is chosen randomly and reversed a
binary bit; “1” to “0” or visa versa, to increase the
algorithm’s freedom to search outside the current
region of parameter space to avoid getting stuck in
local minima. Then, the cost functions are computed
again, and iterate this process for convergence.

The scattering model as the cost function is
summarized as in (23), (25), (26), and the following
surface scattering model (Oh er al, 2002: Oh, 2004).

0% =0%g (28)
oY =0%p 29)
0% =0.11m27 cos6>[1 - exp(-0.32(ks)'¥)]  (30)
g =0.095(0.13 + sin(1.50)) (1 - exp(-1.3(ks)>] (31)
p=1-(0/000035m % . exnl-0.4(ks)"4] (32)

where m, denotes volumetric soil moisture, k is wave
number, s is surface RMS height, and 8 is incidence

angle.

5. Inversion Results

A set of polarimetric measurement data was
acquired using the Hongik Polarimetric Scatterometer
system at 1.85 GHz from a tall-grass field at an
incidence angle of 40° for a period of two months in
2006 with various soil moisture conditions and a
fixed surface roughness. The rms height and the
volumetric soil moisture contents 1, (cm3/cm?3) of the
soil surface, and the vegetation water mass m,,
(kg/m?) and the gravimetric moisture content mg
(g/cm3) of the tall-grass were measured. The
measured ground-truth data have the following

values; the vegetation height #=72 cm, averaged leaf
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length Ly,,=60 cm, averaged leaf width Wie,=2 cm,
leaf density Njeqr =800 m2, surface RMS height
s=2.35 cm, and surface correlation length /=34.5 cm.
The measured volumetric soil moisture contents #,
have a range from 0.17 cm¥/cm? 10 0.38 cm3/cm?
during the experiment period.

The unknown constants A and B in (25) and (26)
were determined by comparison between the
scattering model and the measurements using the
minimum mean square error (MMSE) technique. It
was shown that B is not sensitive on polarization. The
estimated values of A, App, Avn, and B are 0.0977,
0.1328, 0.0117, and 7.5, respectively. The scattering
model with the estimated constants agrees quite well
with the measured backscattering coefficients as
shown in Fig. 4.

The vegetation water mass will change depending
on the seasonal variation of the vegetation canopy
and also on the soil moisture content. After analyzing
the two-month measurements of the vegetation water
mass, at first, we selected a functional form for the
annual change of the m,, and the soil moisture
change. Then, the unknown constants of the

functional form were determined by data-fitting with
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Fig. 4. Comparison between the radar measurements and the
scattering model.

in-situ measurements as follows;

7( t-328 )2
my=0.03(328-9e ' 'O 10.6(m,-<m,>). (33)

where ¢ is day of year (DOY), m, is the soil moisture,
and <---> denotes the mean value.

The scattering model is now a function of only two
parameters; the soil moisture content m, and the
surface rms height s, which can be retrieved together
from the measurements using the genetic algorithm.

The measured co-polarized ratio p=09,/5%, and cross-
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Fig. 5. Comparison between the estimated and measured soil
moisture contents using (a) co- and cross-polarized
measurements and (b} only co-polarized measurements.
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polarized ratio g=09,/09, of the tall-grass field, as
well as the vv-, hh-, and hv-polarized backscattering
coefficients (o(v)v, O'Qh, and 02,,), were used to retrieve
the soil moisture and surface roughness using the
GA-based inversion algorithm. The inversion results
which are obtained from each of the measured o9,
oW 9. p, and ¢, are combined to get averaged
values. Fig. 5 shows the comparison between the
estimated and in-situ measured soil moisture
contents. Results of Fig. 5(a) were obtained using all
data (0%, oy, of» p, and g) resulting an RMS error
of 0.0364, while only the co-polarized data (69, %,
and p) were used for Fig 5 (b) resulting an RMS error
of 0.0266.

Since the simplified scattering model is not valid
for cross-polarization, the cross-polarization data (o),
and ¢) does not help at all as shown in Fig. 5 (a) and
(b). It is recommended to use only co-polarization
measurements when the simplified scattering model
of (23) is employed for the GA-based inversion
algorithm. The averaged value of ten estimated
surface heights was 2.38 cm, which agrees quite well
with the measured surface RMS height s=2.35 cm. In
Fig. 5 (b), three measurements show large discrepancies
between the measurements and the estimations. We
can consider various sources of errors affecting soil
moisture retrieval, such as imperfection of the
scattering model, inaccurate radar measurements, and

inaccurate in situ measurements of the soil moisture.

6. Conclusions

A simple scattering model for vegetated surfaces
was derived by analysis and simplification of the
precise radiative transfer model. The backscattering
coefficients for a tall-grass field were measured with
a polarimetric L-band scatterometer for various

conditions of soil moisture at a fixed surface roughness.

The ground truth data including the biomass, leaf
moisture content, and soil moisture content were also
collected in situ for every measurement. Unknown
parameters of the scattering model were determined
based on the measurements of the vegetation canopy.
An inversion technique was developed based on the
genetic algorithm using the scattering model as a
costing function. The accuracy of the inversion
algorithm was verified by comparisons between the
measurements and the estimations of the soil

moisture and surface roughness.
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