• Title/Summary/Keyword: Ground Plate

Search Result 444, Processing Time 0.034 seconds

The Study about The Minimum Ignition Energy for Electrostatic Discharge in The Gasoline-air Mixture (정전기 방전에 의한 개소린-공기혼합기체의 최소착화에너지에 관한 연구)

  • 황명환;이덕출
    • Fire Science and Engineering
    • /
    • v.10 no.1
    • /
    • pp.3-9
    • /
    • 1996
  • Electrostatic charge is generated in large scale or high speed processes dealing with materials with large resistance, or under complicated condition. Fire and explosion often occur due to electrostatic charge accumulated in flammable gases, vapor, liquids and powder. It is usually very difficult to verify the cause of accidents as well as the prevention. In this study, it is shown that the needle electrode needs the electrode gap from 1.8mm to 3.8mm, sphere electrode and plate electrodes need the electrode gap of 1.9mmfor the minimum ignition energy. The sphere electrode and the plate electrode requires 12.8mJ and 3.2mJ of minimum ignition energy respectively with the electrode gap of 1.1mm. The ignition voltage rises to very large value as the ground resistance increases.

  • PDF

Analysis of The Grounding Plate Electrodes by Water tank model Experiment (수조모델 실험에 의한 각판상 접지극의 해석)

  • Koh, Hee-Seog;Lee, Chung-Sik;Choi, Jong-Kyu;Lee, Hyun-Moo;Kim, Ju-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.39-41
    • /
    • 2003
  • In this paper, we examine theory of literature announced recently. At the same time. analysis a special quality of the Grounding Plate Electrodes that is laid under the ground to homogeneity earth by Dwight way that is announced in existing and then examined through analysis of theory Value and resistance Value of water tank model experiment Value.

  • PDF

Development of a Novel Noncontact ECG Electrode by MEMS Fabrication Process

  • Mathias, Dakurah Naangmenkpeong;Park, Jaesoon;Kim, Eungbo;Joung, Yeun-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.150-154
    • /
    • 2016
  • Contact electrodes pose threats like inflammation, metal poisoning, and allergic reaction to the user during long term ECG procedure. Therefore, we present a novel noncontact electrocardiographic electrode designed through microelectromechanical systems (MEMS) process. The proposed ECG electrode consists of small inner and large outer circular copper plates separated by thin insulator. The inner plate enables capacitive transduction of bio-potential variations on a subject’s chest into a voltage that can be processed by a signal processing board, whereas the outer plate shields the inner plate from environmental electromagnetic noise. The electrode lead wires are also coaxially designed to prevent cables from coupling to ground or electronic devices. A prototype ECG electrode has an area of about 2.324 cm2, is very flexible and does not require power to operate. The prototype ECG electrode could measure ECG at about 500 um distance from the subject’s chest.

Stress Analysis of Plate-Spring-Type Landing Gear Materials (판스프링형 랜딩기어의 재질에 따른 응력 해석)

  • Kim, Kyeong-Hwan;Lee, Young-Shin;Han, Jae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.303-308
    • /
    • 2014
  • Aircraft are an indispensable mode of modern transportation. They are also used as in a wide variety of other fields. For example, aircraft are used for accommodating passengers, carrying freight, and for military reconnaissance. Aircraft ground operations include landing and taking off. During landing, a higher load is applied to the landing gear than during takeoff. The landing gear should absorb impact energy and prevent damage to the main body of the aircraft in the case of an accident. In this study, simulations were performed for two types of plate-spring-type landing gear: that made of composite materials and that constructed with aluminum. The structural safety of landing gear made of each material was also evaluated.

A Model Test on Uplift Behavior of Plate Anchor (Plate Anchor의 인발거동에 관한 모형실험)

  • Kim, Seo Seong;Lee, Sang Duk;Koo, Ja Kap;Jeon, Mong Gak;Yoo, Keon Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1219-1227
    • /
    • 1994
  • For Determination of the ultimate uplift capacity, the failure mechanism of the foundation by uplift should be correctly known. However, studies on the variation of the failure mechanism with the embedment ratio of anchor plate among those factors governing the uplift resistance are scarce. In this study. in an attempt to observe more clearly the variation of the failure mechanism with embedment ratio and to check applicability of existing formulae for the ultimate uplift capacity. a model test was performed with ground made of carbon rods, simulating a plane strain conditions. As a result, failure characteristics of shallow and deep anchor conditions were clearly classified. It was found that the analysis of a shallow anchor should be made prior to determination of the ultimate uplift capacity of a deep anchor.

  • PDF

Suppression of Parallel Plate Modes Using Edge-Located EBG Structure in High-Speed Power Bus

  • Cho, Jonghyun;Kim, Myunghoi
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.4
    • /
    • pp.252-257
    • /
    • 2016
  • An edge-located electromagnetic bandgap (EL-EBG) structure using a defected ground structure (DGS) is proposed to suppress resonant modes induced by edge excitation in a two-dimensional planar parallel plate waveguide (PPW). The proposed EL-DGS-EBG PPW significantly mitigates multiple transverse-magnetic (TM) modes in a wideband frequency range corresponding to an EBG stopband. To verify the wideband suppression, test vehicles of a conventional PPW, a PPW with a mushroom-type EBG structure, and an EL-DGS-EBG PPW are fabricated using a commercial process involving printed circuit boards (PCBs). Measurements of the input impedances show that multiple resonant modes of the previous PPWs are significantly excited through an input port located at a PPW edge. In contrast, resonant modes in the EL-DGS-EBG PPW are substantially suppressed over the frequency range of 0.5 GHz to 2 GHz. In addition, we have experimentally demonstrated that the EL-DGS-EBG PPW reduces the radiated emission from -24 dB to -44 dB as compared to the conventional PPW.

Performance of the Small PEMFC according to Cathode (Cathode에 따른 소형 PEM 연료전지의 성능 변화)

  • Lee, Se-Won;Lee, Kang-In;Park, Min-Soo;Chu, Chong-Nam
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.4
    • /
    • pp.283-290
    • /
    • 2008
  • In this paper, experiments with an air-breathing proton exchange membrane fuel cell (PEMFC) for mobile devices were carried out according to cathode conditions. These conditions are defined by the cathode flow field plate type (the channel type, the open type) and the cathode surface direction. Single-cell and 6-cell stack were used in the experiments. The experimental results showed that the open-type cathode flow field plate gave a better performance than the small channel type. In the experiments related to the direction of the slits on the cathode flow field plate, the horizontal slit cell was better than the vertical one. With respect to the cathode surface direction, when the cathode surface is placed in the direction normal to the ground, the PEMFC generated more stable power in the mass transport loss region. Since stable power in the mass transport region is closely related to the air supply, computational fluid dynamics (CFD) analysis for air-breathing PEMFC of different cathode surface directions was performed.

Grounding Characteristics Analysis of the Stainless-steel Plate Grounding Electrode for Distribution Poles (배전전주용 스테인리스강판 접지전극의 접지 특성분석)

  • Kim, Kyung-Chul;Lee, Kyu-Jin;Kim, Min-Sung;Jung, Ji-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.8
    • /
    • pp.94-100
    • /
    • 2010
  • Grounding system insures a reference potential point for electric devices and also provides a low impedance path for fault currents or transient currents in the earth. The ground impedance as function of frequency is necessary for determining its performance since fault currents could contain a wide range of frequencies. In this paper, the grounding resistance, grounding impedance and transient grounding impedance are measured by using 3-point fall-of-potential method in order to analyse grounding characteristics of the stainless-steel plate grounding electrode. An equivalent transfer function model of the grounding impedance and transient grounding impedance are identified from the measured values by using ARMA method and evaluated by comparing conventional grounding impedances.

Study on seismic retrofit of structures using SPSW systems and LYP steel material

  • Zirakian, Tadeh;Zhang, Jian
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.1-23
    • /
    • 2016
  • Steel plate shear walls (SPSWs) have been shown to be efficient lateral force-resisting systems, which are increasingly used in new and retrofit construction. These structural systems are designed with either stiffened and stocky or unstiffened and slender web plates based on disparate structural and economical considerations. Based on some limited reported studies, on the other hand, employment of low yield point (LYP) steel infill plates with extremely low yield strength, and high ductility as well as elongation properties is found to facilitate the design and improve the structural behavior and seismic performance of the SPSW systems. On this basis, this paper reports system-level investigations on the seismic response assessment of multi-story SPSW frames under the action of earthquake ground motions. The effectiveness of the strip model in representing the behaviors of SPSWs with different buckling and yielding properties is primarily verified. Subsequently, the structural and seismic performances of several code-designed and retrofitted SPSW frames with conventional and LYP steel infill plates are investigated through detailed modal and nonlinear time-history analyses. Evaluation of various seismic response parameters including drift, acceleration, base shear and moment, column axial load, and web-plate ductility demands, demonstrates the capabilities of SPSW systems in improving the seismic performance of structures and reveals various advantages of use of LYP steel material in seismic design and retrofit of SPSW systems, in particular, application of LYP steel infill plates of double thickness in seismic retrofit of conventional steel and code-designed SPSW frames.

Investigation of Microbial Contamination in Semisulcospira libertine and Evaluation of Its Reduction Effects by Sediment Removal Treatment (다슬기(Semisulcospira libertine)의 미생물 오염도 평가 및 해감 제거공정에 따른 저감화 효과)

  • Choi, Man-Seok;Jun, Eun Bi;Choi, Seungho;Bang, Hyeon-Jo;Park, Shin Young
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.4
    • /
    • pp.361-366
    • /
    • 2019
  • In this study, microbial contamivation semisulcospira libertine and effect of sedimentation treatment of major bacterial and fungal pathogens were investigated. The total aerobic bacteria, coliforms, Escherichia coli, Staphylococcus aureus, and yeast and mold present in raw and water-dipped Semisulcospira libertine were enumerated using the standard plate count methods on using the standard plate method on potato dextrose agar (PDA), 3M Petrifilm for coliforms / E. coli, 3M Petrifilm for S. aureus, and plate count agar (PCA), respectively. In analysis of microbial contamination of raw Semisulcospira libertine, the total aerobic bacteria, coliforms, and yeast and mold were monitored as 6.40, 2.70, and $6.79{\log}_{10}CFU/g$, respectively. Both E. coli and S. aureus were not detected (detection limit: 10 CFU/g). However, Semisulcospira libertine dipped in ground water for 3 hours had higher contamination levels of all natural indigenous microorganisms than raw Semisulcospira libertine. Especially, E. coli was detected as $2.46{\log}_{10}CFU/g$ in the ground water-dipped Semisulcospira libertine. The total aerobic bacteria in the ground water-dipped Semisulcospira libertine was not significantly reduced (p>0.05) compared to that in the raw Semisulcospira libertine. Moreover, coliforms were significantly increased (p>0.05) in all water-dipped Semisulcospira libertine. Only fungi were slightly reduced (less than 0.2 log) (p>0.05) in the tap water-dipped Semisulcospira libertine by comparison with the raw Semisulcospira libertine. The results of this study suggest that the use of chemical sterilizing agents and other physical methods in the washing stage will be necessary for the microbial reduction in raw Semisulcospira libertine because the use of sediment removal treatment by ground or tap water did not affect the microbiological safety of the raw Semisulcospira libertine.