• Title/Summary/Keyword: Ground Information Extraction

Search Result 136, Processing Time 0.028 seconds

Development of Shoreline Extraction Algorithm using Airborne LiDAR Data (LiDAR 데이터를 이용한 해안선 추출 알고리즘 개발)

  • Wie Gwang-Jae;Jeong Jae-Wook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.209-215
    • /
    • 2006
  • Shoreline changes its shapes and attribution dynamically by natural, unnatural acts and is the most information for country. These shorelines can apply to framework data of MGIS (Marine Geographic Information System), and they are getting important to implement a phase of monitoring around coastal areas. This study proposed an algorithm automatically extracting shorelines to use a new developed LiDAR (Light Detection And Ranging) data which is applying in ocean and coastal areas. Then, in result, it was compared to shorelines which is derived from ground survey. In result, it shows stable shorelines in various coast areas such as nature, artificial coast. Additionally, and a possibility of shoreline extraction through LiDAR data.

Detecting and Extracting Changed Objects in Ground Information (지반정보 변화객체 탐지·추출 시스템 개발)

  • Kim, Kwangsoo;Kim, Bong Wan;Jang, In Sung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.515-523
    • /
    • 2021
  • An integrated underground spatial map consists of underground facilities, underground structures, and ground information, and is periodically updated. In this paper, we design and implement a system for detecting and extracting only changed ground objects to shorten the map update speed. To find the changed objects, all the objects are compared, which are included in the newly input map and the reference map in the integrated map. Since the entire process of comparing objects and generating results is classified by function, the implemented system is composed of several modules such as object comparer, changed object detector, history data manager, changed object extractor, changed type classifier, and changed object saver. We use two metrics: detection rate and extraction rate, to evaluate the performance of the system. As a result of applying the system to boreholes, ground wells, soil layers, and rock floors in Pyeongtaek, 100% of inserted, deleted, and updated objects in each layer are detected. In addition, it provides the advantage of ensuring the up-to-dateness of the reference map by downloading it whenever maps are compared. In the future, additional research is needed to confirm the stability and effectiveness of the developed system using various data to apply it to the field.

Water body extraction in SAR image using water body texture index

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.337-346
    • /
    • 2015
  • Water body extraction based on backscatter information is an essential process to analyze floodaffected areas from Synthetic Aperture Radar (SAR) image. Water body in SAR image tends to have low backscatter values due to homogeneous surface of water, while non-water body has higher backscatter values than water body. Non-water body, however, may also have low backscatter values in high resolution SAR image such as Kompsat-5 image, depending on surface characteristic of the ground. The objective of this paper is to present a method to increase backscatter contrast between water body and non-water body and also to remove efficiently misclassified pixels beyond true water body area. We create an entropy image using a Gray Level Co-occurrence Matrix (GLCM) and classify the entropy image into water body and non-water body pixels by thresholding of the entropy image. In order to reduce the effect of threshold value, we also propose Water Body Texture Index (WBTI), which measures simultaneously the occurrence of repeated water body pixel pair and the uniformity of water body in the binary entropy image. The proposed method produced high overall accuracy of 99.00% and Kappa coefficient of 90.38% in water body extraction using Kompsat-5 image. The accuracy analysis indicates that the proposed WBTI method is less affected by the choice of threshold value and successfully maintains high overall accuracy and Kappa coefficient in wide threshold range.

Optimization of Aqueous Methanol Extraction Condition of Total Polyphenol from Spent $Lycium$ $chinense$ Miller to Develop Feed Additives for Pig (양돈용 사료 첨가제 개발을 위하여 구기자 부산물로부터 메탄올수용액을 이용한 총 폴리페놀 추출조건 최적화)

  • Shim, Kwan-Seob;Na, Chong-Sam;Oh, Sung-Jin;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.1
    • /
    • pp.91-99
    • /
    • 2012
  • This study was conducted to develop a functional feed additive for pig with spent $Lycium$ $chinense$ Mill fruit. We investigated the optimum conditions for the extraction of polyphenol from spent $Lycium$ $chinense$ Mill using methanol. Methanol concentration as a solvent for extraction, extraction time and the volume of solvent per a gram of solid (ground spent Lyceum chinense Mill) were selected as parameters. Three levels of parameters were configured according to Box Behnken experiment design, a fractional factorial design, and total 15 trials were employed. Total polyphenol concentration from each trial was used as response from experiment system and effects of parameters on total polyphenol extraction efficiency were determined using response surface model. As a result, all terms in analysis of variance, regression ($p$ = 0.001), linear ($p$ = 0.002), square ($p$ = 0.017) and interaction ($p$ = 0.047) was significant and adjusted determination coefficient ($R^2$) was 94.7%. Total polyphenol extraction efficiency was elevated along increased methanol content and decreased solvent to solid ratio. However extraction time did not affect the efficiency. This study provides a primary information for the optimum extraction conditions to maximize total polyphenol recovery from spent Lycium chinens Mill fruit and this result could be applied to re-use of argo-industrial by-products and to develop of functional feed additives in organic farming.

Area Extraction of License Plates Using an Artificial Neural Network

  • Kim, Hyun-Yul;Lee, Seung-Kyu;Lee, Geon-Wha;Park, Young-rok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.4
    • /
    • pp.212-222
    • /
    • 2014
  • In the current study, the authors propose a method for extracting license plate regions by means of a neural network trained to output the plate's center of gravity. The method is shown to be effective. Since the learning pattern presentation positions are defined by random numbers, a different pattern is submitted to the neural network for learning each time, which enables it to form a neural network with high universality of coverage. The article discusses issues of the optimal learning surface for a license plate covered by the learning pattern, the effect of suppression learning of the number and pattern enlargement/reduction and of concentration value conversion. Results of evaluation tests based on pictures of 595 vehicles taken at an under-ground parking garage demonstrated detection rates of 98.5%, 98.7%, and 100%, respectively.

Extraction of an Effective Saliency Map for Stereoscopic Images using Texture Information and Color Contrast (색상 대비와 텍스처 정보를 이용한 효과적인 스테레오 영상 중요도 맵 추출)

  • Kim, Seong-Hyun;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1008-1018
    • /
    • 2015
  • In this paper, we propose a method that constructs a saliency map in which important regions are accurately specified and the colors of the regions are less influenced by the similar surrounding colors. Our method utilizes LBP(Local Binary Pattern) histogram information to compare and analyze texture information of surrounding regions in order to reduce the effect of color information. We extract the saliency of stereoscopic images by integrating a 2D saliency map with depth information of stereoscopic images. We then measure the distance between two different sizes of the LBP histograms that are generated from pixels. The distance we measure is texture difference between the surrounding regions. We then assign a saliency value according to the distance in LBP histogram. To evaluate our experimental results, we measure the F-measure compared to ground-truth by thresholding a saliency map at 0.8. The average F-Measure is 0.65 and our experimental results show improved performance in comparison with existing other saliency map extraction methods.

A Comparison of Deep Reinforcement Learning and Deep learning for Complex Image Analysis

  • Khajuria, Rishi;Quyoom, Abdul;Sarwar, Abid
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The image analysis is an important and predominant task for classifying the different parts of the image. The analysis of complex image analysis like histopathological define a crucial factor in oncology due to its ability to help pathologists for interpretation of images and therefore various feature extraction techniques have been evolved from time to time for such analysis. Although deep reinforcement learning is a new and emerging technique but very less effort has been made to compare the deep learning and deep reinforcement learning for image analysis. The paper highlights how both techniques differ in feature extraction from complex images and discusses the potential pros and cons. The use of Convolution Neural Network (CNN) in image segmentation, detection and diagnosis of tumour, feature extraction is important but there are several challenges that need to be overcome before Deep Learning can be applied to digital pathology. The one being is the availability of sufficient training examples for medical image datasets, feature extraction from whole area of the image, ground truth localized annotations, adversarial effects of input representations and extremely large size of the digital pathological slides (in gigabytes).Even though formulating Histopathological Image Analysis (HIA) as Multi Instance Learning (MIL) problem is a remarkable step where histopathological image is divided into high resolution patches to make predictions for the patch and then combining them for overall slide predictions but it suffers from loss of contextual and spatial information. In such cases the deep reinforcement learning techniques can be used to learn feature from the limited data without losing contextual and spatial information.

Development of Intelligent Surveillance System Using Stationary Camera for Multi-Target-Based Object Tracking (다중영역기반의 객체추적을 위한 고정형 카메라를 이용한 지능형 감시 시스템 개발)

  • Im, Jae-Hyun;Kim, Tae-Kyung;Choi, Kwang-Yong;Han, In-Kyo;Paik, Joon-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.789-790
    • /
    • 2008
  • In this paper, we introduce the multi-target-based auto surveillance algorithm. Multi-target-based surveillance system detects intrusion objects in the specified areas. The proposed algorithm can divide into two parts: i) background generation, ii) object extraction. In this paper, one of the optical flow equation methods for estimation of gradient method used to generate the background [2]. In addition, the objects and back- ground video images that are continually entering the differential extraction.

  • PDF

Extraction of 3D Building Information using Shadow Analysis from Single High Resolution Satellite Images (단일 고해상도 위성영상으로부터 그림자를 이용한 3차원 건물정보 추출)

  • Lee, Tae-Yoon;Lim, Young-Jae;Kim, Tae-Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.3-13
    • /
    • 2006
  • Extraction of man-made objects from high resolution satellite images has been studied by many researchers. In order to reconstruct accurate 3D building structures most of previous approaches assumed 3D information obtained by stereo analysis. For this, they need the process of sensor modeling, etc. We argue that a single image itself contains many clues of 3D information. The algorithm we propose projects virtual shadow on the image. When the shadow matches against the actual shadow, the height of a building can be determined. If the height of a building is determined, the algorithm draws vertical lines of sides of the building onto the building in the image. Then the roof boundary moves along vertical lines and the footprint of the building is extracted. The algorithm proposed can use the shadow cast onto the ground surface and onto facades of another building. This study compared the building heights determined by the algorithm proposed and those calculated by stereo analysis. As the results of verification, root mean square errors of building heights were about 1.5m.

  • PDF

Water Detection in an Open Environment: A Comprehensive Review

  • Muhammad Abdullah, Sandhu;Asjad, Amin;Muhammad Ali, Qureshi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Open surface water body extraction is gaining popularity in recent years due to its versatile applications. Multiple techniques are used for water detection based on applications. Different applications of Radar as LADAR, Ground-penetrating, synthetic aperture, and sounding radars are used to detect water. Shortwave infrared, thermal, optical, and multi-spectral sensors are widely used to detect water bodies. A stereo camera is another way to detect water and different methods are applied to the images of stereo cameras such as deep learning, machine learning, polarization, color variations, and descriptors are used to segment water and no water areas. The Satellite is also used at a high level to get water imagery and the captured imagery is processed using various methods such as features extraction, thresholding, entropy-based, and machine learning to find water on the surface. In this paper, we have summarized all the available methods to detect water areas. The main focus of this survey is on water detection especially in small patches or in small areas. The second aim of this survey is to detect water hazards for unmanned vehicles and off-sure navigation.