• Title/Summary/Keyword: Ground Induced Vibration

Search Result 132, Processing Time 0.022 seconds

Development of Empirical Equations for Estimating the Train-Induced Ground Vibration (철도연변 지반 진동 Data Base 구축을 통한 지반진동예측 실험식)

  • 황선근;고태훈;엄기영;오상덕
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1022-1027
    • /
    • 2001
  • In this study, the train-induced vibration was measured at many locations at/around the actual service lines and the data base was constructed using the measurement results. The characteristics of train induced ground vibration was categorized and the empirical ground vibration estimating equations were developed. On the ground area (level grounds, embankments, cut sections), the vibration estimating equations were developed in terms of ground vibration level which was related with the distance from the source. Especially for the cut section areas, the vibration levels were expressed with the vibration receiving point expressed by the ratio of vertical distance to horizontal distance(V/H) from the source. As a result, when V/H is 0.96, the vibration estimating equation gives a minimum vibration level.

  • PDF

Study for the prediction of ground-borne vibration induced by subway (지하철에 의한 지반 진동 예측에 관한 연구)

  • 이재원;김득성;장서일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1287-1292
    • /
    • 2001
  • Subway train-induced ground-borne vibration is studied. Previously used vibration level prediction equations are reviewed. Measured vibration levels are compared with the predicted results and numerically computed results. The results show that vibration level does not decrease proportionally with the distance.

  • PDF

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.

Study on the Improvement of Empirical Formula for Prediction of Ground Vibration Induced by Urban Rapid Transit (도시철도 지반진동 예측식 개선에 관한 연구)

  • Shin, Han-Chul;Cho, Sun-Kyu;Yang, Shin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.3
    • /
    • pp.357-363
    • /
    • 2009
  • In this paper, field measurements in the subway tunnel and adjacent building were performed to predict the pound vibration level induced by urban rapid transit (subway) in Seoul, Korea. From the results of the measurements, the measured ground vibration level induced by subway in Seoul is smaller than the empirical formula of New York, but it is bigger than the empirical formula of Tokyo which has been commonly used in Korea. We suggested the empirical formula for prediction of ground vibration level induced by subway in Seoul considering on the wave propagation path for soils or rocks, respectively.

Vertical Z-vibration prediction model of ground building induced by subway operation

  • Zhou, Binghua;Xue, Yiguo;Zhang, Jun;Zhang, Dunfu;Huang, Jian;Qiu, Daohong;Yang, Lin;Zhang, Kai;Cui, Jiuhua
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.273-280
    • /
    • 2022
  • A certain amount of random vibration excitation to subway track is caused by subway operation. This excitation is transmitted through track foundation, tunnel, soil medium, and ground building to the ground and ground structure, causing vibration. The vibration affects ground building. In this study, the results of ANSYS numerical simulation was used to establish back-propagation (BP) neural network model. Moreover, a back-propagation neural network model consisting of five input neurons, one hidden layer, 11 hidden-layer neurons, and three output neurons was used to analyze and calculate the vertical Z-vibration level of New Capital's ground buildings of Qingdao Metro phase I Project (Line M3). The Z-vibration level under different working conditions was calculated from monolithic roadbed, steel-spring floating slab roadbed, and rubber-pad floating slab roadbed under the working condition of center point of 0-100 m. The steel-spring floating slab roadbed was used in the New Capital area to monitor the subway operation vibration in this area. Comparing the monitoring and prediction results, it was found that the prediction results have a good linear relationship with lower error. The research results have good reference and guiding significance for predicting vibration caused by subway operation.

Development of Analysis Method and Computer Program for Train-induced Ground Vibration (철도연변 지반진동 예측기법 및 전산프로그램 개발)

  • 황선근;엄기영;고태훈;이종재
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.203-210
    • /
    • 2000
  • Recently, environmental vibration by train operation has been getting such an attention that the ISO puts it into the environmental vibration regulation. However, the reasonable and efficient countermeasures against such a kind of vibration is not well established, especially in residential areas near the railroad. Therefore, it is very important to estimate the ground vibration induced by the train operation for the design and construction of track supporting structures as well as structures near the track. In this study a model estimating dynamic load on track due to train operation and analysis technique of propagation of ground vibration were developed. Futhermore, the estimated vibration from this model was compared with the actual measurement data in the field and found to be reasonably acceptable.

  • PDF

A evaluation and countermeasure for blast-induced vibration of micro electronic production facility based on experimental method (실험적 방법에 의한 발파작업으로 기인하는 인접 초정밀 생산장비 FAB에 미치는 진동 영향성 평가 및 제어대책)

  • Son, Sung-Wan;Park, Sang-Gon;Lee, Hong-Ki;Chun, Jong-Kun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.875-878
    • /
    • 2006
  • In the case of a vibration sensitive equipment, it require a vibration free environment to provide its proper function, therefore, it is very important to predict precisely vibration environment of microelectronics production facility due to adjacent blast work. However, it is not easy to evaluate a quantitative vibration response of structure due blast because it can be determined by the characteristics of vibration sources, propagation through rock and soil and dynamic properties of building. In this paper, vibration influence evaluation of micro-electronic Production building induced from adjacent blast activity was performed by real measurement data obtained on ground and structure at same time. And blast vibration allowable limit on ground was supposed by measurement data analysis in order to avoid operation error of precision equipments

  • PDF

Prediction and Control of the Propogation of Underground Train Systems-induced Ground Vibration: State of the Art (지하철 차량운행에 의한 진동영향 평가: State of the Art)

  • Lee, In-Mo;Choe, Sang-Sun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.06a
    • /
    • pp.73-82
    • /
    • 1993
  • Ground-borne vibration is one of the main causes of environmental impact from subway systems. The vibration resulting from track-train interaction is transuutted through the tunnel structure and the surrounding ground to adjacent buildings. This paper provides a summary of proposed noise and vibration criteria, a review of the ground vibration propagation mechanism and the theoretical isolation effectivenesss of each of the following underground transit systems : track, tunnel and vehicle itself.

  • PDF

Measurement and Prediction Analysis of Ground and Structural Vibration Induced by Train Load (열차하중에 의한 지반 및 인접구조물의 진동 계측과 예측 해석)

  • 이주호;박광순;박경래;양신추
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.365-370
    • /
    • 1998
  • In this study, the method of analysis which is developed for calculating dynamic train loads and ground vibration by Shin-Chu Yang is verified comparing measurements of real structure. The results of analysis are agreed well with measurements of ground and structural vibration induced by passing train. The vibration level of analyzed results which is more than that of measured gives conservative result. To analyze frequency characteristics, the analyzed results are applied to the ISO environmental vibration regulation and reveal the possibility of application in analysis of frequency characteristics.

  • PDF

Field Tests Investigating the Ground Borne Vibration Induced by Underground Railway Tunnel (터널 내 열차주행으로 인한 지반진동 현장측정시험)

  • Ahn, Sung-Kwon;Bang, Eun-Seok;Lee, Bae
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.208-213
    • /
    • 2010
  • This paper describes the instruments used, and the test procedures adopted, and the findings obtained from a research project aiming to investigate, via full-scale field tests, the ground borne vibration caused by underground railway tunnel constructed in hard rock. The ground borne vibration induced by high-speed trains (i.e. the Korea Train eXpress (KTX) services) with a speed of approximately 200km/hr was measured inside the borehole constructed in the close proximity to the KTX tunnel using 3-component borehole seismographs in order to investigate the wave propagation of ground borne vibration. This paper also discusses the limitation associated with the current practice of measuring ground borne vibration using conventional borehole seismograph.